OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications

M. Imran Cheema and Andrew G. Kirk  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8724-8735 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Due to ultra high quality factor (106 − 109), axisymmetric optical microcavities are popular platforms for biosensing applications. It has been recently demonstrated that a microcavity biosensor can track a biodetection event as a function of its quality factor by using phase shift cavity ring down spectroscopy (PS-CRDS). However, to achieve maximum sensitivity, it is necessary to optimize the microcavity parameters for a given sensing application. Here, we introduce an improved finite element model which allows us to determine the optimized geometry for the PS-CRDS sensor. The improved model not only provides fast and accurate determination of quality factors but also determines the tunneling distance of axisymmetric resonators. The improved model is validated numerically, analytically, and experimentally.

© 2013 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.1545) Remote sensing and sensors : Chemical analysis
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: January 11, 2013
Revised Manuscript: March 12, 2013
Manuscript Accepted: March 17, 2013
Published: April 2, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

M. Imran Cheema and Andrew G. Kirk, "Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications," Opt. Express 21, 8724-8735 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics267–291 (2012).
  2. X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Analytica Chimica Acta620, 8–26 (2008) [CrossRef]
  3. L. Maleki and V. S. Ilchenko, “Techniques and devices for sensing a sample by using a whispering gallery mode resonator,” California Institute of Technology, US Patent 6,490,039, (2002).
  4. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE4629, 72 (2002).
  5. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-q microcavities,” Opt. Lett.31, 1896–1898 (2006). [CrossRef] [PubMed]
  6. J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. W. B. Wilson, S. Yam, and O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express16, 13158–13167 (2008). [CrossRef] [PubMed]
  7. M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express20, 9090–9098 (2012). [CrossRef] [PubMed]
  8. C. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett.73, 2308–2311, (1994). [CrossRef] [PubMed]
  9. P. Pereyra, “Closed formulas for tunneling time in superlattices,” Phys. Rev. Lett.84, 1772–1775 (2000). [CrossRef] [PubMed]
  10. V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett.30, (2005). [CrossRef] [PubMed]
  11. M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express17, 19160 (2009). [CrossRef]
  12. O. Chinellato, P. Arbenz, M. Streiff, and A. Witzig, “Computation of optical modes in axisymmetric open cavity resonators,” Future Gener. Comp. Sy.21, 1263–1274 (2005). [CrossRef]
  13. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micropillar cavity quality factors calculated with finite element methods,” Opt. Express2, (2009).
  14. M. Koshiba, K. Hayata, and M. Suzuki, “Improved finite element formulation in terms of the magnetic field vector for dielectric waveguides,” IEEE Trans. on Microwave Theory Tech.33, 227–233, (1985). [CrossRef]
  15. R. A. Osegueda, J. H. Pierluissi, L. M. Gil, A. Revilla, G. J. Villalva, G. J. Dick, D. G. Santiago, and R. T. Wang, “Azimuthally dependent finite element solution to the cylindrical resonator,”10th annual review of progress in applied computational electromagnetics1, 159–170, (1994).
  16. M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. on Microwave Theory Tech.55, 1209–1218 (2007). [CrossRef]
  17. S. M. Spillane, “Fiber-coupled ultra-high-Q microresonators for nonlinear and quantum optics,” PhD. thesis, CALTECH (2004)
  18. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express18, 19541–19557 (2010). [CrossRef] [PubMed]
  19. https://sites.google.com/site/axisymmetricmarkoxborrow/home
  20. M. Oxborrow, J. D. Breeze, and N. M. Alford, “Room-temperature solid-state maser,” Nature488, 353–356 (2012). [CrossRef] [PubMed]
  21. C. Shi, H. S. Choi, and A. M. Armani, “Optical microcavities with a thiol-functionalized gold nanoparticle polymer thin film coating,” Appl. Phys. Lett.100, 013305 (2012). [CrossRef]
  22. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. (2011). [CrossRef]
  23. Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett.105, 153902, (2010). [CrossRef]
  24. M. I. Cheema and A. G. Kirk, “Implementation of the perfectly matched layer to determine the quality factor of axisymmetric resonators in COMSOL,” in COMSOL conference,Boston, Oct 8 2010.
  25. A. Arbabi, Y. M. Kang, and L. L. Goddard, “Analysis and Design of a Microring Inline Single Wavelength Reflector,” in FIO, October24, 2010.
  26. F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett.7, 371–373, (1997). [CrossRef]
  27. V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,”Appl. Phys.B54, 184–187, (1992).
  28. L. A. Weinstein, Open Resonators and Open Waveguides (The Golem Press, Boulder, Colorado, USA, 1969) pp. 298.
  29. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67033806 (2003). [CrossRef]
  30. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,”J. Opt. Soc. Am. A10, 2, (1993). [CrossRef]
  31. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  32. S. Scheurich, S. Belle, R. Hellmann, S. So, I.J.G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356 (2009) [CrossRef]
  33. M. Gallignani, S. Garrigues, and M. Guardia, “Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry,”Analyst118, (1993). [CrossRef]
  34. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer, 1997).
  35. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery modes,” J. Opt. Soc. Am. A20, 157–162, (2003). [CrossRef]
  36. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O, Appl. Phys. Lett.87, (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited