OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Can OCT be sensitive to nanoscale structural alterations in biological tissue?

Ji Yi, Andrew J. Radosevich, Jeremy D. Rogers, Sam C.P. Norris, İlker R. Çapoğlu, Allen Taflove, and Vadim Backman  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9043-9059 (2013)
http://dx.doi.org/10.1364/OE.21.009043


View Full Text Article

Enhanced HTML    Acrobat PDF (2241 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Mateŕn functional family. By measuring the wavelength-dependent backscattering coefficient μb(λ) and the scattering coefficient μs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples.

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.0290) Scattering : Scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 3, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 11, 2013
Published: April 4, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ji Yi, Andrew J. Radosevich, Jeremy D. Rogers, Sam C.P. Norris, İlker R. Çapoğlu, Allen Taflove, and Vadim Backman, "Can OCT be sensitive to nanoscale structural alterations in biological tissue?," Opt. Express 21, 9043-9059 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-7-9043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cremer, K. Küpper, B. Wagler, L. Wizelman, J. von Hase, Y. Weiland, L. Kreja, J. Diebold, M. R. Speicher, and T. Cremer, “Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei,” J. Cell Biol.162(5), 809–820 (2003). [CrossRef] [PubMed]
  2. C. Lanctôt, T. Cheutin, M. Cremer, G. Cavalli, and T. Cremer, “Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions,” Nat. Rev. Genet.8(2), 104–115 (2007). [CrossRef] [PubMed]
  3. O. Nadiarnykh, R. B. LaComb, M. A. Brewer, and P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy,” BMC Cancer10(1), 94 (2010). [CrossRef] [PubMed]
  4. S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol.192(3), 259–267 (2002). [CrossRef] [PubMed]
  5. N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology34(1), 82–88 (2001). [CrossRef] [PubMed]
  6. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984). [CrossRef]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  10. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  11. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A.104(44), 17255–17260 (2007). [CrossRef] [PubMed]
  12. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  13. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  14. A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of diffuse reflectance in continuous random media under the Born approximation,” Opt. Lett.37, 5220–5222 (2012). [CrossRef] [PubMed]
  15. A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett.36(24), 4737–4739 (2011). [CrossRef] [PubMed]
  16. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt.17(4), 047005 (2012). [CrossRef] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  18. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  19. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002). [CrossRef] [PubMed]
  20. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011). [CrossRef] [PubMed]
  21. J. Yi, Q. Wei, H. F. Zhang, and V. Backman, “Structured interference optical coherence tomography,” Opt. Lett.37(15), 3048–3050 (2012). [CrossRef] [PubMed]
  22. A. Fercher, “Inverse Scattering, Dispersion, and Speckle in Optical Coherence Tomography,” Optical Coherence Tomography 119–146 (2008).
  23. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef] [PubMed]
  24. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature173(4409), 821–822 (1954). [CrossRef] [PubMed]
  25. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett.21(16), 1310–1312 (1996). [CrossRef] [PubMed]
  26. M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A18(4), 948–960 (2001). [CrossRef] [PubMed]
  27. C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett.32(2), 142–144 (2007). [CrossRef] [PubMed]
  28. J. D. Rogers, İ. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  29. J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett.37(21), 4443–4445 (2012). [CrossRef] [PubMed]
  30. İ. R. Capoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett.34(17), 2679–2681 (2009). [CrossRef] [PubMed]
  31. H. G. Davies, M. H. F. Wilkins, J. Chayen, and L. F. La Cour, “The use of the interference microscope to determine dry mass in living cells and as a quantitative cytochemical method,” Quarterly J.Microscopical Sciences (New York)3, 271–304 (1954).
  32. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  33. C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett.32(2), 142–144 (2007). [CrossRef] [PubMed]
  34. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  35. H. C. van de Hulst, Light Scattering by Small Particles (Dover publications, 1981).
  36. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express17(15), 13157–13167 (2009). [CrossRef] [PubMed]
  37. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett.35(3), 360–362 (2010). [CrossRef] [PubMed]
  38. C. Matzler, “Autocorrelation functions of granular media with free arrangement of spheres, spherical shells or ellipsoids,” J. Appl. Phys.81(3), 1509–1517 (1997). [CrossRef]
  39. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (3395 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited