OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Horizontal slot waveguide channel for enhanced Raman scattering

Jussi Rahomäki, Tarmo Nuutinen, Lasse Karvonen, Seppo Honkanen, and Pasi Vahimaa  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9060-9068 (2013)
http://dx.doi.org/10.1364/OE.21.009060


View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Herein we characterize and experimentally demonstrate a new type of a horizontal slot waveguide structure for remarkably enhanced Raman scattering detection in nanometer-scale void channels. As the measurement sensitivity is one of the key limiting factors in nanofluidic detection, it is essential to search advanced solutions for such detection. Combining an all dielectric resonance waveguide grating and a surface enhanced Raman scattering (SERS) substrate in a close proximity it is possible to create high electromagnetic field energy hot zones within an adjustable slot region. This results in a strong enhancement in Raman scattering. We show the theoretical principles and demonstrate, with rhodamine 6G molecules, an approximately 20-fold enhancement compared to a conventional SERS substrate within the corresponding slot arrangement. We foresee potential applications for the proposed approach in the fields of medical, biological and chemical sensing, where the high detection sensitivity is essential due to integration with nanofluidic devices.

© 2013 OSA

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.2785) Thin films : Guided wave applications
(050.5745) Diffraction and gratings : Resonance domain
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Spectroscopy

History
Original Manuscript: January 7, 2013
Revised Manuscript: February 22, 2013
Manuscript Accepted: February 22, 2013
Published: April 4, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jussi Rahomäki, Tarmo Nuutinen, Lasse Karvonen, Seppo Honkanen, and Pasi Vahimaa, "Horizontal slot waveguide channel for enhanced Raman scattering," Opt. Express 21, 9060-9068 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-7-9060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Prospects of nanotechnology in clinical immunodiagnostics.” Sensors 10, 6535–658 (2010). [CrossRef] [PubMed]
  2. M. M. Bellah and S. M. C. S. M. Iqbal, “Nanostrutures for medical diagnostics.” J. Nanomater 2012, 486301 (2012). [CrossRef]
  3. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics.” Nature 33, 381–386 (2006). [CrossRef]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.” Nature 457, 71–75 (2009). [CrossRef]
  5. D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.” Small 8, 2787–2801 (2012). [CrossRef] [PubMed]
  6. Z. Q. Tian, “Surface-enhanced raman spectroscopy: advancements and applications.” J. Raman Spectrosc. 36, 466–470 (2005). [CrossRef]
  7. M. Moskovits, “Surface-enhanced raman spectroscopy: a brief retrospective.” J. Raman Spectrosc. 36, 485–496 (2005). [CrossRef]
  8. M. Moskovits, “Surface-enhanced spectroscopy.” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  9. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced raman scattering.” J. Raman Spectrosc. 36, 497–509 (2005). [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering.” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  11. C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced raman scattering.” Small 5, 2876–2882 (2009). [CrossRef] [PubMed]
  12. M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced raman spectroscopy.” Lab Chip 7, 630–632 (2007). [CrossRef] [PubMed]
  13. M. Huang, A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors.” Opt. Express 17, 24224–24233 (2009). [CrossRef]
  14. P. Karvinen, T. Nuutinen, J. Rahomäki, O. Hyvärinen, and P. Vahimaa, “Strong fluorescence-signal gain with single-excitation-enhancing and emission-directing nanostructured diffraction grating.” Opt. Lett. 34, 3208–3210 (2009). [CrossRef] [PubMed]
  15. T. Nuutinen, P. Karvinen, J. Rahomäki, and P. Vahimaa, “Resonant waveguide grating (rwg): Overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescent measurements.” Anal. Method. 5, 281–284 (2013). [CrossRef]
  16. P. Päivänranta, Nanostructured surfaces for photonic and biophotonic applications (Joensuu University, 2009).
  17. L. Mashev and E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984). [CrossRef]
  18. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings.” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  19. R. Magnusson and S. S. Wang, “New principles for optical filters.” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  20. D. Rosenblatt, A. Sharon, and A. A. Friesem, “ Resonant grating waveguide structures.” IEEE J. of Quantum Elect. 33, 2038–2059 (1997). [CrossRef]
  21. A. Sato, N. Iwai, and M. Sato, “Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end face.” J. Opt. Soc. Am. A 27, 1671–1678 (2010). [CrossRef]
  22. S. S. Wang and R. Magnusson, “Design of wave-guide-grating filters with symmetrical line-shapes and low side-band.” Opt. Lett. 19, 919–921 (1994). [CrossRef] [PubMed]
  23. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter.” Opt. Lett. 23, 1556–1558 (1998). [CrossRef]
  24. Y. Fang, A. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing.” Biophysical Journal 91, 1925–1940 (2006). [CrossRef] [PubMed]
  25. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguidestructures.” Opt. Lett. 29, 1989–1991 (2004). [CrossRef] [PubMed]
  26. A. Saari, G. Genty, M. S. P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating.” Opt. Express 18, 122298–12303 (2010). [CrossRef]
  27. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure.” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  28. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (Tailor & Francis Group, 2012).
  29. M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic-inorganic guided mode resonance filters.” Opt. Express 19, 24241–24251 (2011). [CrossRef] [PubMed]
  30. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process.” J. Mater. Chem. 12, 522–527 (2002). [CrossRef]
  31. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their sers application.” Opt. Mater. Express 1, 164–172 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited