OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography

Jianhua Mo, Mattijs de Groot, and Johannes F. de Boer  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10048-10061 (2013)
http://dx.doi.org/10.1364/OE.21.010048


View Full Text Article

Enhanced HTML    Acrobat PDF (2366 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method to extend the depth-of-focus of Optical Coherence Tomography (OCT). OCT is an interferometric imaging technique that provides depth-resolved scattering information. The axial resolution in OCT is provided by the coherence gate and is invariant over the full image depth. The lateral resolution is determined by the beam parameters such as wavelength and numerical aperture. The Rayleigh range determines the depth range over which the lateral resolution can be maintained. The lateral resolution is often sacrificed to maintain relatively long Rayleigh range. In this study, we propose to use a depth-encoded synthetic aperture detection scheme to extend the depth range over which a sharp focus can be maintained beyond the Rayleigh range. An annular phase plate is inserted into the light path in the sample arm, which gives rise to three separate images in a single B-scan, corresponding to three different optical path length encoded apertures. These three images are coherently summed after phase-manipulation to reconstruct a new image with a lateral resolution that is maintained over a five times larger depth range.

© 2013 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(100.3175) Image processing : Interferometric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: January 30, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 3, 2013
Published: April 15, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jianhua Mo, Mattijs de Groot, and Johannes F. de Boer, "Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography," Opt. Express 21, 10048-10061 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-8-10048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  4. B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000). [CrossRef] [PubMed]
  5. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000). [CrossRef] [PubMed]
  6. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011). [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008). [CrossRef] [PubMed]
  8. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992). [CrossRef] [PubMed]
  9. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997). [CrossRef]
  10. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004). [CrossRef]
  11. B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010). [CrossRef] [PubMed]
  12. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  13. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  14. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007). [CrossRef] [PubMed]
  15. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  16. Y. Yasuno, J.-i. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006). [CrossRef] [PubMed]
  17. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  18. M. de Groot, C. L. Evans, and J. F. de Boer, “Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning,” Opt. Express20(14), 15253–15262 (2012). [CrossRef] [PubMed]
  19. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010). [CrossRef] [PubMed]
  20. J. Li, M. de Groot, F. Helderman, J. Mo, J. M. A. Daniels, K. Grünberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20(22), 24132–24138 (2012). [CrossRef] [PubMed]
  21. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited