OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Compact surface plasmon-enhanced fluorescence biochip

Koji Toma, Milan Vala, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 10121-10132 (2013)
http://dx.doi.org/10.1364/OE.21.010121


View Full Text Article

Enhanced HTML    Acrobat PDF (2082 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new concept of compact biochip for surface plasmon-enhanced fluorescence assays is reported. It takes advantage of the amplification of fluorescence signal through the coupling of fluorophore labels with confined and strongly enhanced field intensity of surface plasmons. In order to efficiently excite and collect the emitted fluorescence light via surface plasmons on a metallic sensor surface, (reverse) Kretschmann configuration is combined with diffractive optical elements embedded on the chip surface. These include a concentric relief grating for the imaging of highly directional surface plasmon-coupled emission to a detector. Additional linear grating is used for the generating of surface plasmons at the excitation wavelength on the sensor surface in order to increase the fluorescence excitation rate. The reported approach offers the increased intensity of fluorescence signal, reduced background, and compatibility with nanoimprint lithography for cost-effective preparation of sensor chip. The presented approach was implemented for biosensing in a model immunoassay experiment in which the limit of detection of 11 pM was achieved.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(300.2530) Spectroscopy : Fluorescence, laser-induced
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Sensors

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 4, 2013
Published: April 16, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Koji Toma, Milan Vala, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek, "Compact surface plasmon-enhanced fluorescence biochip," Opt. Express 21, 10121-10132 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-8-10121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  2. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010). [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  4. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron.6(3), 201–214 (1991). [CrossRef] [PubMed]
  5. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  6. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008). [CrossRef]
  7. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008). [CrossRef] [PubMed]
  8. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp.171(1-3), 115–130 (2000). [CrossRef]
  9. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  10. L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010). [CrossRef] [PubMed]
  11. K. Tawa, Y. Yokota, K. Kintaka, J. Nishii, and T. Nakaoki, “An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range,” Sens. Actuators B Chem.157(2), 703–709 (2011). [CrossRef]
  12. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004). [CrossRef] [PubMed]
  13. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun.307(3), 435–439 (2003). [CrossRef] [PubMed]
  14. J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron.25(6), 1344–1349 (2010). [CrossRef] [PubMed]
  15. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express20(13), 14042–14053 (2012). [CrossRef] [PubMed]
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  17. K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express19(12), 11090–11099 (2011). [CrossRef] [PubMed]
  18. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005). [CrossRef] [PubMed]
  19. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited