OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Super-resolution image transfer by a vortex-like metamaterial

Hui Yuan Dong, Jin Wang, Kin Hung Fung, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9407-9413 (2013)
http://dx.doi.org/10.1364/OE.21.009407


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single design. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

History
Original Manuscript: February 28, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: April 1, 2013
Published: April 9, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Hui Yuan Dong, Jin Wang, Kin Hung Fung, and Tie Jun Cui, "Super-resolution image transfer by a vortex-like metamaterial," Opt. Express 21, 9407-9413 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-8-9407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  2. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006). [CrossRef] [PubMed]
  6. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007). [CrossRef] [PubMed]
  7. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007). [CrossRef] [PubMed]
  8. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006). [CrossRef]
  9. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006). [CrossRef]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006). [CrossRef] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007). [CrossRef] [PubMed]
  12. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun.1, 143 (2010). [CrossRef]
  13. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32, 3432–3434 (2007). [CrossRef] [PubMed]
  14. J. Wang, H. Y. Dong, K. H. Fung, T. J. Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system,” Opt. Express19, 16809–16820 (2011). [CrossRef] [PubMed]
  15. G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs,” Phys. Rev. B86, 115123 (2012). [CrossRef]
  16. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012). [CrossRef]
  17. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2, 438–442 (2008). [CrossRef]
  18. Y. Zhao, D. Gan, J. Cui, C. Wang, C. Du, and X. Luo, “Super resolution imaging by compensating oblique lens with metallodielectric films,” Opt. Express16, 5697–5707 (2008). [CrossRef] [PubMed]
  19. H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B78, 054204 (2008). [CrossRef]
  20. A. Wonisch, U. Neuhäusler, N. M. Kabachnik, T. Uphues, M. Uiberacker, V. Yakovlev, F. Krausz, M. Drescher, U. Kleineberg, and U. Heinzmann, “Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses,” Appl. Opt.45, 4147–4156 (2006). [CrossRef] [PubMed]
  21. J. Zhang, L. You, H. Ye, and D. Yu, “Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope,” Nanotechnology18, 155303 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited