OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection

Mingqian Zhang, Jia Wang, and Qian Tian  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9414-9421 (2013)
http://dx.doi.org/10.1364/OE.21.009414


View Full Text Article

Enhanced HTML    Acrobat PDF (1933 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tip-enhanced Raman spectroscopy (TERS) based on plasmonic lens (PL) excitation is proposed in this work. A PL expected to realize a strong longitudinal electric field focus is designed. The focusing performance of the PL is calculated via finite-difference time-domain (FDTD) simulation and experimentally detected by a scattering-type scanning near-field optical microscope. The PL is introduced to a TERS system as a focusing device. Experimental results with carbon nanotube samples indicate that the Raman scatting signal is significantly enhanced. It proves experimentally that the combination of a PL focused excitation field with a metallic tip in a TERS system is a promising method.

© 2013 OSA

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Spectroscopy

History
Original Manuscript: March 4, 2013
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 5, 2013
Published: April 9, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Mingqian Zhang, Jia Wang, and Qian Tian, "Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection," Opt. Express 21, 9414-9421 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-8-9414


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000). [CrossRef]
  2. B. Pettinger, G. Picardi, R. Schuster, G. Ertl, “Surface enhanced Raman spectroscopy: Towards single molecular spectroscopy,” Electrochemistry 68, 942–949 (2000).
  3. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183(1-4), 333–336 (2000). [CrossRef]
  4. M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76(21), 3130–3132 (2000). [CrossRef]
  5. L. G. Cançado, A. Hartschuh, L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman 40(10), 1420–1426 (2009). [CrossRef]
  6. K. F. Domke, D. Zhang, B. Pettinger, “Toward Raman fingerprints of single dye molecules at atomically smooth Au(111),” J. Am. Chem. Soc. 128(45), 14721–14727 (2006). [CrossRef] [PubMed]
  7. T. Yano, P. Verma, Y. Saito, T. Ichimura, S. Kawata, “Pressure-assisted tip-enhanced Raman imaging at the resolution of a few nanometers,” Nat. Photonics 3(8), 473–477 (2009). [CrossRef]
  8. D. Kurouski, T. Deckert-Gaudig, V. Deckert, I. K. Lednev, “Structure and composition of insulin fibril surfaces probed by TERS,” J. Am. Chem. Soc. 134(32), 13323–13329 (2012). [CrossRef] [PubMed]
  9. C. Blum, T. Schmid, L. Opilik, N. Metanis, S. Weidmann, R. Zenobi, “Missing amide i mode in gap-mode tip-enhanced Raman spectra of proteins,” J. Phys. Chem. C 116(43), 23061–23066 (2012). [CrossRef]
  10. F. Sinjab, B. Lekprasert, R. A. J. Woolley, C. J. Roberts, S. J. B. Tendler, I. Notingher, “Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips,” Opt. Lett. 37(12), 2256–2258 (2012). [CrossRef] [PubMed]
  11. K. D. Alexander, Z. D. Schultz, “Tip-enhanced Raman detection of antibody conjugated nanoparticles on cellular membranes,” Anal. Chem. 84(17), 7408–7414 (2012). [CrossRef] [PubMed]
  12. A. Bouhelier, R. Bachelot, S. Kalinin, and A. Gruverman, eds., Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, 2007), p. 254.
  13. B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, W. Zhang, “Tip-enhanced Raman Spectroscopy – Its status, challenges and future directions,” Chem. Phys. Lett. 472(1-3), 1–13 (2009). [CrossRef]
  14. D. Zhang, U. Heinemeyer, C. Stanciu, M. Sackrow, K. Braun, L. E. Hennemann, X. Wang, R. Scholz, F. Schreiber, A. J. Meixner, “Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling,” Phys. Rev. Lett. 104(5), 056601–056605 (2010). [CrossRef] [PubMed]
  15. J. Stadler, T. Schmid, R. Zenobi, “Developments in and practical guidelines for tip-enhanced Raman spectroscopy,” Nanoscale 4(6), 1856–1870 (2012). [CrossRef] [PubMed]
  16. K. F. Domke, B. Pettinger, “Studying surface chemistry beyond the diffraction limit: 10 years of TERS,” ChemPhysChem 11(7), 1365–1373 (2010). [CrossRef] [PubMed]
  17. L. Novotny, R. X. Bian, X. S. Xie, “Theory of Nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997). [CrossRef]
  18. Y. Fu, X. Zhou, “Plasmonic lenses: A Review,” Appl. Phys. Lett. 82, 161–163 (2003).
  19. A. Yanai, U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009). [CrossRef] [PubMed]
  20. G. M. Lerman, A. Yanai, U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  21. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  22. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  23. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005). [CrossRef]
  24. H. Kim, B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008). [CrossRef] [PubMed]
  25. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011). [CrossRef] [PubMed]
  26. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011). [CrossRef] [PubMed]
  27. W. Chen, D. C. Abeysinghe, R. L. Nelson, Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  28. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” Opt. Soc. Am. A 10(10), 2193–2201 (1993). [CrossRef]
  29. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett. 9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  30. P. C. Eklund, J. M. Holden, R. A. Jishi, “Vibrational modes of carbon nanotubes; spectroscopy and theory,” Carbon 33(7), 959–972 (1995). [CrossRef]
  31. S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, F. Mauri, “Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects,” Phys. Rev. B 75(3), 035427 (2007). [CrossRef]
  32. D. Richards, R. G. Milner, F. Huang, F. Festy, “Tip-enhanced Raman microscopy: practicalities and limitations,” J. Raman Spectrosc. 34(9), 663–667 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited