OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Averaging techniques for OCT imaging

Maciej Szkulmowski and Maciej Wojtkowski  »View Author Affiliations

Optics Express, Vol. 21, Issue 8, pp. 9757-9773 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5284 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



State-of-the-art Fourier-domain optical coherence tomography (OCT) allows for the acquisition of up to millions of spectral fringes per second. This large amount of data can be used to improve the quality of structural tomograms after effective averaging. Here, we compare three OCT image improvement techniques: magnitude averaging, complex averaging, and spectral and time domain OCT (STdOCT). We evaluate the performance for images on both linear and logarithmic intensity scales and discuss their advantages and disadvantages. We propose the use of the STdOCT approach as it offers the best advantages. Applications to in vivo imaging and speckle reduction are presented.

© 2013 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 15, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 9, 2013
Published: April 12, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Maciej Szkulmowski and Maciej Wojtkowski, "Averaging techniques for OCT imaging," Opt. Express 21, 9757-9773 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  3. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  4. P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010). [CrossRef] [PubMed]
  5. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  8. M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012). [CrossRef] [PubMed]
  9. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012). [CrossRef]
  10. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012). [CrossRef] [PubMed]
  11. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  12. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2606–2611 (2005). [CrossRef]
  13. P. H. Tomlins and R. K. Wang, “Digital phase stabilization to improve detection sensitivity for optical coherence tomography,” Meas. Sci. Technol.18(11), 3365–3372 (2007). [CrossRef]
  14. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  15. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  16. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009). [CrossRef] [PubMed]
  17. J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” Proc. SPIE8091, 80910L, 80910L-7 (2011). [CrossRef]
  18. D. Bukowska, D. Ruminski, D. Szlag, I. Grulkowski, J. Wlodarczyk, M. Szkulmowski, G. Wilczynski, I. Gorczynska, and M. Wojtkowski, “Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography,” J. Biomed. Opt.17(10), 101515 (2012). [CrossRef] [PubMed]
  19. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012). [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (Wiley, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited