OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

120 nm resolution and 55 nm structure size in STED-lithography

Richard Wollhofen, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10831-10840 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2043 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two–photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

© 2013 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: January 2, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 31, 2013
Published: April 25, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Richard Wollhofen, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar, "120 nm resolution and 55 nm structure size in STED-lithography," Opt. Express 21, 10831-10840 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett.16(22), 1780–1782 (1991). [CrossRef] [PubMed]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  4. F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012). [CrossRef]
  5. J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007). [CrossRef]
  6. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012). [CrossRef]
  7. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  8. X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008). [CrossRef]
  9. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011). [CrossRef]
  10. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie9(1), 413–418 (1873). [CrossRef]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  12. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009). [CrossRef]
  13. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006). [CrossRef] [PubMed]
  14. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006). [CrossRef] [PubMed]
  15. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009). [CrossRef] [PubMed]
  16. P. A. Pellett, X. L. Sun, T. J. Gould, J. E. Rothman, M. Q. Xu, I. R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express2(8), 2364–2371 (2011). [CrossRef] [PubMed]
  17. K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011). [CrossRef] [PubMed]
  18. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999). [CrossRef] [PubMed]
  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  20. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009). [CrossRef] [PubMed]
  21. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009). [CrossRef] [PubMed]
  22. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010). [CrossRef] [PubMed]
  23. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013). [CrossRef]
  24. Y. S. Cao, Z. S. Gan, B. H. Jia, R. A. Evans, and M. Gu, “High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization,” Opt. Express19(20), 19486–19494 (2011). [CrossRef] [PubMed]
  25. D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008). [CrossRef] [PubMed]
  26. L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosoph. Mag. J. Science42(255), 167–195 (1896). [CrossRef]
  27. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916). [CrossRef]
  28. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  29. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005). [CrossRef]
  30. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007). [CrossRef]
  31. S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006). [CrossRef]
  32. T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett.36(16), 3188–3190 (2011). [CrossRef] [PubMed]
  33. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012). [CrossRef] [PubMed]
  34. B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012). [CrossRef] [PubMed]
  35. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012). [CrossRef] [PubMed]
  36. D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).
  37. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999). [CrossRef]
  38. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011). [CrossRef] [PubMed]
  39. J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011). [CrossRef] [PubMed]
  40. R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012). [CrossRef] [PubMed]
  41. R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005). [CrossRef] [PubMed]
  42. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997). [CrossRef] [PubMed]
  43. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited