OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Correcting chromatic offset in multicolor super-resolution localization microscopy

Miklos Erdelyi, Eric Rees, Daniel Metcalf, Gabriele S. Kaminski Schierle, Laszlo Dudas, Jozsef Sinko, Alex E. Knight, and Clemens F. Kaminski  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10978-10988 (2013)
http://dx.doi.org/10.1364/OE.21.010978


View Full Text Article

Enhanced HTML    Acrobat PDF (1990 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization based super-resolution microscopy techniques require precise drift correction methods because the achieved spatial resolution is close to both the mechanical and optical performance limits of modern light microscopes. Multi-color imaging methods require corrections in addition to those dealing with drift due to the static, but spatially-dependent, chromatic offset between images. We present computer simulations to quantify this effect, which is primarily caused by the high-NA objectives used in super-resolution microscopy. Although the chromatic offset in well corrected systems is only a fraction of an optical wavelength in magnitude (<50 nm) and thus negligible in traditional diffraction limited imaging, we show that object colocalization by multi-color super-resolution methods is impossible without appropriate image correction. The simulated data are in excellent agreement with experiments using fluorescent beads excited and localized at multiple wavelengths. Finally we present a rigorous and practical calibration protocol to correct for chromatic optical offset, and demonstrate its efficacy for the imaging of transferrin receptor protein colocalization in HeLa cells using two-color direct stochastic optical reconstruction microscopy (dSTORM).

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 11, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 18, 2013
Published: April 26, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Miklos Erdelyi, Eric Rees, Daniel Metcalf, Gabriele S. Kaminski Schierle, Laszlo Dudas, Jozsef Sinko, Alex E. Knight, and Clemens F. Kaminski, "Correcting chromatic offset in multicolor super-resolution localization microscopy," Opt. Express 21, 10978-10988 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-9-10978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2002)
  2. S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl.48(37), 6903–6908 (2009). [CrossRef] [PubMed]
  7. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5(11), 943–945 (2008). [CrossRef] [PubMed]
  8. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  9. E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012). [CrossRef]
  10. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express20(11), 12177–12183 (2012). [CrossRef] [PubMed]
  11. M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express19(16), 15009–15019 (2011). [CrossRef] [PubMed]
  12. S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express18(24), 24461–24476 (2010). [CrossRef] [PubMed]
  13. H. Bock, C. Geisler, C. A. Wurm, C. von Middendorff, S. Jacobs, A. Schonle, A. Egner, S. W. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88(2), 161–165 (2007). [CrossRef]
  14. S. van de Linde, U. Endesfelder, A. Mukherjee, M. Schüttpelz, G. Wiebusch, S. Wolter, M. Heilemann, and M. Sauer, “Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging,” Photochem. Photobiol. Sci.8(4), 465–469 (2009). [CrossRef] [PubMed]
  15. L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” in Single-Molecule Techniques: A Laboratory Manual. P. R. Selvin, and T. Ha eds. (Cold Spring Harbor Laboratory Press, 2008), pp. 73–84.
  16. M. Bates, G. T. Dempsey, K. H. Chen, and X. Zhuang, “Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection,” ChemPhysChem13(1), 99–107 (2012). [CrossRef] [PubMed]
  17. I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Fölling, S. Jakobs, A. Schönle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99(8), 2686–2694 (2010). [CrossRef] [PubMed]
  18. D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011). [CrossRef] [PubMed]
  19. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature466(7306), 647–651 (2010). [CrossRef] [PubMed]
  20. A. Löschberger, S. van de Linde, M. C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne, and M. Sauer, “Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution,” J. Cell Sci.125(3), 570–575 (2012). [CrossRef] [PubMed]
  21. Y. Fujimoto and T. Kasahara, “Immersion objective lens system for microscope”, US patent US 7,199,938 B2 (2007).
  22. Lambda Research Corp., OSLO optics software, optics reference ver. 6.1.
  23. M. Mandai and K. Yamaguchi, “Immersion microscope objective lens”, US patent US 7,046,451 B2 (2006).
  24. http://laser.cheng.cam.ac.uk/wiki/index.php/Resources
  25. M. Ahn, E. De Genst, G. S. Kaminski Schierle, M. Erdelyi, C. F. Kaminski, C. M. Dobson, and J. R. Kumita, “Analysis of the native structure, stability and aggregation of biotinylated human lysozyme,” PLoS ONE7(11), e50192 (2012). [CrossRef] [PubMed]
  26. G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-Amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011). [CrossRef] [PubMed]
  27. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited