OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

Enhancing diffractive multi-plane microscopy using colored illumination

Alexander Jesacher, Clemens Roider, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11150-11161 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2611 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to increase the number of simultaneously imaged focal planes in diffractive multi-plane imaging. We exploit the chromatic properties of diffraction by using multicolor LED illumination and demonstrate time-synchronous imaging of up to 21 focal planes.We discuss the possibilities and limits given by the use of a liquid crystal spatial light modulator to display the diffractive patterns. The method is suitable for wide-field transmission and reflection microscopy.

© 2013 osa

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:

Original Manuscript: February 20, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 11, 2013
Published: April 30, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Alexander Jesacher, Clemens Roider, and Monika Ritsch-Marte, "Enhancing diffractive multi-plane microscopy using colored illumination," Opt. Express 21, 11150-11161 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Prabhat, S. Ram, E. Ward, and R. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobiosci.3, 237–242 (2004). [CrossRef]
  2. I. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol.151, 182–195 (2005). [CrossRef] [PubMed]
  3. T. M. Watanabe, T. Sato, K. Gonda, and H. Higuchi, “Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics,” Biochem. Bioph. Res. Co.359, 1–7 (2007). [CrossRef]
  4. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Meth.5, 527–529 (2008). [CrossRef]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth.3, 793–795 (2006). [CrossRef]
  8. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32, 2007–2009 (2007). [CrossRef] [PubMed]
  9. J. Rosen and G. Brooker, “Fresnel incoherent correlation holography (FINCH): a review of research,” Adv. Opt. Tech.1, 151–169 (2012).
  10. W. Xu, M. Jericho, H. Kreuzer, and I. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.28, 164–166 (2003). [CrossRef] [PubMed]
  11. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30, 468–470 (2005). [CrossRef] [PubMed]
  12. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express13, 6738–6749 (2005). [CrossRef] [PubMed]
  13. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006). [CrossRef] [PubMed]
  14. L. Holtzer, T. Meckel, and T. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett.90, 053902 (2007). [CrossRef]
  15. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA106, 2995–2999 (2009). [CrossRef] [PubMed]
  16. M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett.36, 202–204 (2011). [CrossRef] [PubMed]
  17. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett.7, 2043–2045 (2007). [CrossRef] [PubMed]
  18. P. Blanchard and A. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt.38, 6692–6699 (1999). [CrossRef]
  19. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett.33, 2098–2100 (2008). [CrossRef] [PubMed]
  20. Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, “Spectrally resolved multidepth fluorescence imaging,” J. Biomed. Opt.16, 096015 (2011). [CrossRef] [PubMed]
  21. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express18, 3023–3034 (2010). [CrossRef] [PubMed]
  22. P. Blanchard and A. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun.183, 29–36 (2000). [CrossRef]
  23. Y. Feng, P. A. Dalgarno, D. Lee, Y. Yang, R. R. Thomson, and A. H. Greenaway, “Chromatically-corrected, high-efficiency, multi-colour, multi-plane 3D imaging,” Opt. Express20, 20705–20714 (2012). [CrossRef] [PubMed]
  24. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Meth.10, 60–63 (2013). [CrossRef]
  25. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007). [CrossRef] [PubMed]
  26. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18, 21090–21099 (2010). [CrossRef] [PubMed]
  27. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J Neural Eng.6, 066004 (2009). [CrossRef] [PubMed]
  28. A. Jesacher and M. Ritsch-Marte, “Multi-focal light microscopy using liquid crystal spatial light modulators,” in “International Symposium on Optomechatronic Technologies (ISOT) 2012,” (2012), pp. 1–2. [CrossRef]
  29. P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics7, 1–14 (2013). [CrossRef]
  30. G. Di Francia, “Resolving Power and Information,” J. Opt. Soc. Am.45, 497–501 (1955). [CrossRef]
  31. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt.46, 4197–4201 (2007). [CrossRef] [PubMed]
  32. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express20, 17843–17855 (2012). [CrossRef] [PubMed]
  33. G. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt.32, 2222–2223 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (250 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited