OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Optical coherence correlation spectroscopy (OCCS)

Stephane Broillet, Akihiro Sato, Stefan Geissbuehler, Christophe Pache, Arno Bouwens, Theo Lasser, and Marcel Leutenegger  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 782-802 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4507 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new method called optical coherence correlation spectroscopy (OCCS) using nanoparticles as reporters of kinetic processes at the single particle level. OCCS is a spectral interferometry based method, thus giving simultaneous access to several sampling volumes along the optical axis. Based on an auto-correlation analysis, we extract the diffusion coefficients and concentrations of nanoparticles over a large concentration range. The cross-correlation analysis between adjacent sampling volumes allows to measure flow parameters. This shows the potential of OCCS for spatially resolved diffusion and flow measurements.

© 2014 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: November 6, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 19, 2013
Published: January 7, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Stephane Broillet, Akihiro Sato, Stefan Geissbuehler, Christophe Pache, Arno Bouwens, Theo Lasser, and Marcel Leutenegger, "Optical coherence correlation spectroscopy (OCCS)," Opt. Express 22, 782-802 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Magde, E. Elson, W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972). [CrossRef]
  2. R. Rigler, E. Elson, Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001). [CrossRef]
  3. K. Hassler, P. Rigler, H. Blom, R. Rigler, J. Widengren, T. Lasser, “Dynamic disorder in horseradish peroxidase observed with total internal reflection fluorescence correlation spectroscopy,” Opt. Express 15, 5366–5375 (2007). [CrossRef] [PubMed]
  4. P. Schwille, U. Haupts, S. Maiti, W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999). [CrossRef] [PubMed]
  5. D. Schaeffel, R. Staff, H.-J. Butt, K. Landfester, D. Crespy, K. Koynov, “Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation,” Nano Lett. 12, 6012–6017 (2012). [CrossRef] [PubMed]
  6. K. Jaskiewicz, A. Larsen, D. Schaeffel, K. Koynov, I. Lieberwirth, G. Fytas, K. Landfester, A. Kroeger, “Incorporation of nanoparticles into polymersomes: Size and concentration effects,” ACS Nano 6, 7254–7262 (2012). [CrossRef] [PubMed]
  7. P. Dittrich, P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74, 4472–4479 (2002). [CrossRef] [PubMed]
  8. W. Schrof, J. Klingler, S. Rozouvan, D. Horn, “Raman correlation spectroscopy: A method for studying chemical composition and dynamics of disperse systems,” Phys. Rev. E. 57, R2523–R2526 (1998). [CrossRef]
  9. T. Hellerer, A. Schiller, G. Jung, A. Zumbusch, “Coherent anti-stokes raman scattering (cars) correlation spectroscopy,” Chem. Phys. Chem. 3, 630–633 (2002). [CrossRef] [PubMed]
  10. J. Cheng, E. Potma, S. Xie, “Coherent anti-stokes raman scattering correlation spectroscopy: Probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002). [CrossRef]
  11. M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. Bocchio, S. Geissbuehler, M. Leutenegger, I. Maerki, J. Wolf, T. Lasser, “Nonlinear correlation spectroscopy (nlcs),” Nano Lett. 12, 1668–1672 (2012). [CrossRef] [PubMed]
  12. T. Liedl, S. Keller, F. Simmel, J. Radler, W. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1, 997–1003 (2005). [CrossRef]
  13. V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. Fernig, B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3, 345–350 (2009). [CrossRef] [PubMed]
  14. P. Paulo, A. Gaiduk, F. Kulzer, S. Gabby Krens, H. Spaink, T. Schmidt, M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009). [CrossRef]
  15. J. Yguerabide, E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications i. theory,” Anal. Biochem. 262, 137–156 (1998). [CrossRef] [PubMed]
  16. B. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (John Wiley and Sons, New-York, 1976).
  17. D. Boas, K. Bizheva, A. Siegel, “Using dynamic low-coherence interferometry to image brownian motion within highly scattering media,” Opt. Lett. 23, 319–321 (1998). [CrossRef]
  18. S. Dominguez-Medina, S. McDonough, P. Swanglap, C. Landes, S. Link, “In situ measurement of bovine serum albumin interaction with gold nanospheres,” Langmuir 28, 9131–9139 (2012). [CrossRef] [PubMed]
  19. S. Wennmalm, J. Widengren, “Interferometry and fluorescence detection for simultaneous analysis of labeled and unlabeled nanoparticles in solution,” J. Am. Chem. Soc. 134, 19516–19519 (2012). [CrossRef] [PubMed]
  20. J. Chen, J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of erbb2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano 3, 4071–4079 (2009). [CrossRef] [PubMed]
  21. M. Digman, C. Brown, P. Sengupta, P. Wiseman, A. Horwitz, E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89, 1317–1327 (2005). [CrossRef] [PubMed]
  22. M. Brinkmeier, K. Doerre, J. Stephan, M. Eigen, “Two-beam cross-correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71, 609–616 (1999). [CrossRef] [PubMed]
  23. M. Gosch, H. Blom, S. Anderegg, K. Korn, P. Thyberg, M. Wells, T. Lasser, R. Rigler, A. Magnusson, S. Hard, “Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements,” J. Biomed. Opt. 10, 054008 (2005). [CrossRef] [PubMed]
  24. T. Dertinger, V. Pacheco, I. Von Der Hocht, R. Hartmann, I. Gregor, J. Enderlein, “Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements,” Chem. Phys. Chem. 8, 433–443 (2007). [CrossRef] [PubMed]
  25. J. Izatt, M. Choma, Optical Coherence Tomography: Technology and Applications (Springer Verlag, Berlin, 2008).
  26. P. Schwille, “Fluorescence correlation spectroscopy and its potential for intracellular applications,” Cell Biochem. Biophys. 34, 383–408 (2001). [CrossRef]
  27. M. Leutenegger, C. Ringemann, T. Lasser, S. Hell, C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence sted microscope (tirf-sted-fcs),” Opt. Express 20, 5243–5263 (2012). [CrossRef] [PubMed]
  28. T. Wohland, R. Rigler, H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80, 2987–2999 (2001). [CrossRef] [PubMed]
  29. J. Kalkman, R. Sprik, T. Van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010). [CrossRef]
  30. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, T. Lasser, “Extended focus depth for fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006). [CrossRef] [PubMed]
  31. M. Villiger, C. Pache, T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35, 3489–3491 (2010). [CrossRef] [PubMed]
  32. C. Pache, N. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. Gibson, C. Santschi, T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy,” Opt. Express 20, 21385–21399 (2012). [CrossRef] [PubMed]
  33. M. Villiger, T. Lasser, “Image formation and tomogram reconstruction in optical coherence microscopy,” J. Opt. Soc. Am. A 27, 2216–2228 (2010). [CrossRef]
  34. M. Leutenegger, R. Rao, R. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006). [CrossRef] [PubMed]
  35. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8, 3486–3495 (2006). [CrossRef] [PubMed]
  36. A. Tcherniak, J. Ha, S. Dominguez-Medina, L. Slaughter, S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010). [CrossRef] [PubMed]
  37. N. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47, 3285–3288 (2008). [CrossRef]
  38. S. Hess, W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002). [CrossRef] [PubMed]
  39. D. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974). [CrossRef]
  40. W. Wright, G. Sonek, M. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994). [CrossRef] [PubMed]
  41. M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875 (2008). [CrossRef]
  42. W. Singer, M. Totzeck, H. Gross, Handbook of Optical Systems: Vol. 2 Physical Image Formation (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).
  43. S. Broillet, A. Sato, S. Geissbuehler, C. Pache, A. Bouwens, T. Lasser, M. Leutenegger, “Matlab OCCS Experiment,” http://lob.epfl.ch/page-103066.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited