OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Continuously tunable reflective-type optical delay lines using microring resonators

Jingya Xie, Linjie Zhou, Zhi Zou, Jinting Wang, Xinwan Li, and Jianping Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 817-823 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3700 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a reflective-type optical delay line using waveguide side-coupled 13 microring resonators terminated with a sagnac loop reflector. Light passes through the microring resonator sequence twice, doubling the delay-bandwidth product. Group delay is tuned by p-i-p type microheaters integrated directly in the microring waveguides. Experiment demonstrates that the delay line can potentially buffer 18 bits and the delay can be continuously tuned for 100 ps with a power tuning efficiency of 0.34 ps/mW. Eye diagrams of a 20-Gbps PRBS signal after 10 and 110 ps delays are also examined.

© 2014 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: October 29, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: December 23, 2013
Published: January 7, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Jingya Xie, Linjie Zhou, Zhi Zou, Jinting Wang, Xinwan Li, and Jianping Chen, "Continuously tunable reflective-type optical delay lines using microring resonators," Opt. Express 22, 817-823 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007). [CrossRef]
  2. J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005). [CrossRef] [PubMed]
  3. D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
  4. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  5. M. Asghari, A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011). [CrossRef]
  6. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  7. Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]
  8. H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012). [CrossRef] [PubMed]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010). [CrossRef]
  10. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007). [CrossRef] [PubMed]
  11. L. Yosef Mario, M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008). [CrossRef] [PubMed]
  12. G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001). [CrossRef]
  13. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef] [PubMed]
  14. A. Melloni, F. Morichetti, C. Ferrari, M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008). [CrossRef] [PubMed]
  15. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, D. K. Gifford, S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett. 35(18), 3030–3032 (2010). [CrossRef] [PubMed]
  16. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010). [CrossRef] [PubMed]
  17. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]
  18. J. B. Khurgin, P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009). [CrossRef] [PubMed]
  19. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011). [CrossRef] [PubMed]
  20. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004). [CrossRef] [PubMed]
  21. Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).
  22. K. Mitsuya, Y. Shoji, and T. Mizumoto, “The First Demonstration of Silicon Waveguide Optical Circulator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.25.
  23. L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013). [CrossRef]
  24. P. Sun, R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009). [CrossRef] [PubMed]
  25. L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited