OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz

Michael Oehme, Konrad Kostecki, Kaiheng Ye, Stefan Bechler, Kai Ulbricht, Marc Schmid, Mathias Kaschel, Martin Gollhofer, Roman Körner, Wogong Zhang, Erich Kasper, and Jörg Schulze  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 839-846 (2014)
http://dx.doi.org/10.1364/OE.22.000839


View Full Text Article

Enhanced HTML    Acrobat PDF (2143 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

GeSn (Sn content up to 4.2%) photodiodes with vertical pin structures were grown on thin Ge virtual substrates on Si by a low temperature (160 °C) molecular beam epitaxy. Vertical detectors were fabricated by a double mesa process with mesa radii between 5 µm and 80 µm. The nominal intrinsic absorber contains carrier densities from below 1·1016 cm−3 to 1·1017 cm−3 for Ge reference detectors and GeSn detectors with 4.2% Sn, respectively. The photodetectors were investigated with electrical and optoelectrical methods from direct current up to high frequencies (40 GHz). For a laser wavelength of 1550 nm an increasing of the optical responsivities (84 mA/W −218 mA/W) for vertical incidence detectors with thin (300 nm) absorbers as function of the Sn content were found. Most important from an application perspective all detectors had bandwidth above 40 GHz at enough reverse voltage which increased from zero to −5 V within the given Sn range. Increasing carrier densities (up to 1·1017 cm−3) with Sn contents caused the depletion of the nominal intrinsic absorber at increasing reverse voltages.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6000) Materials : Semiconductor materials
(230.5160) Optical devices : Photodetectors

ToC Category:
Detectors

History
Original Manuscript: December 3, 2013
Revised Manuscript: December 24, 2013
Manuscript Accepted: December 24, 2013
Published: January 7, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Michael Oehme, Konrad Kostecki, Kaiheng Ye, Stefan Bechler, Kai Ulbricht, Marc Schmid, Mathias Kaschel, Martin Gollhofer, Roman Körner, Wogong Zhang, Erich Kasper, and Jörg Schulze, "GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz," Opt. Express 22, 839-846 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-1-839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali, “Can silicon change photonics?” Phys. Status Solidi 205(2), 213–224 (2008). [CrossRef]
  2. R. Soref, “Silicon photonics: A review of recent literature,” Silicon 2(1), 1–6 (2010). [CrossRef]
  3. E. Kasper, “Prospects and challenges of silicon/germanium on-chip optoelectronics,” Front. Optoelectron. China 3(2), 143–152 (2010). [CrossRef]
  4. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, “Ge on Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photonics Technol. Lett. 21(13), 920–922 (2009). [CrossRef]
  5. J. Wang, S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors 11(1), 696–718 (2011). [CrossRef] [PubMed]
  6. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  7. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  8. R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, I. A. Young, “Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors,” Appl. Phys. Lett. 102(11), 113106 (2013). [CrossRef]
  9. K. Alberi, J. Blacksberg, L. D. Bell, S. Nikzad, K. M. Yu, O. D. Dubon, W. Walukiewicz, “Band anticrossing in highly mismatched SnxGe1−x semiconducting alloys,” Phys. Rev. B 77(7), 073202 (2008). [CrossRef]
  10. E. Kasper, M. Kittler, M. Oehme, T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared,” Photonics Res. 1(2), 69–76 (2013). [CrossRef]
  11. M. Oehme, K. Kostecki, M. Schmid, F. Oliveira, E. Kasper, J. Schulze, “Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn,” Thin Solid Films (2013), doi.org/10.1016/j.tsf.2013.10.064 .
  12. R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menéndez, J. Kouvetakis, “High-performance near-IR photodiodes: A novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon,” IEEE J. Quantum Electron. 47(2), 213–222 (2011). [CrossRef]
  13. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011). [CrossRef] [PubMed]
  14. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012). [CrossRef]
  15. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012). [CrossRef] [PubMed]
  16. M. Oehme, K. Kostecki, T. Arguirov, G. Mussler, K. Ye, M. Gollhofer, M. Schmid, M. Kaschel, R. Körner, M. Kittler, D. Buca, E. Kasper, J. Schulze, “GeSn heterojunction LEDs on Si substrates,” IEEE Photonics Technol. Lett. (2013).
  17. M. Oehme, M. Kaschel, J. Werner, O. Kirfel, M. Schmid, B. Bahouchi, E. Kasper, J. Schulze, “Germanium on silicon photodetectors with broad spectral range,” J. Electrochem. Soc. 157(2), H144–H148 (2010). [CrossRef]
  18. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011). [CrossRef]
  19. M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, E. Kasper, J. Schulze, “Franz–Keldysh effect of germanium-on-silicon p–i–n diodes within a wide temperature range,” Thin Solid Films 525, 110–114 (2012). [CrossRef]
  20. D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).
  21. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley, 2007).
  22. O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
  23. M. Oehme, J. Werner, E. Kasper, M. Jutzi, M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited