OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

The fast polarization modulation based dual-focus fluorescence correlation spectroscopy

Martin Štefl, Aleš Benda, Ingo Gregor, and Martin Hof  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 885-899 (2014)
http://dx.doi.org/10.1364/OE.22.000885


View Full Text Article

Enhanced HTML    Acrobat PDF (2232 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce two new alternative experimental realizations of dual focus fluorescence correlation spectroscopy (2fFCS), a method which allows for obtaining absolute diffusion coefficient of fast moving fluorescing molecules at nanomolar concentrations, based on fast polarization modulation of the excitation beam by a resonant electro-optical modulator. The first approach rotates every second linearly polarized laser pulse by 90 degrees to obtain independent intensity readout for both foci, similar to original design. The second approach combines polarization modulation of cw laser and fluorescence lifetime correlation spectroscopy (FLCS) like analysis to obtain clean correlation curves for both overlapping foci. We tested our new approaches with different lasers and samples, revealed a need for intensity cross-talk corrections by comparing the methods with each other and discussed experimental artifacts stemming from improper polarization alignment and detector afterpulsing. The advantages of our solutions are that the polarization rotation approach requires just one pulsed laser for each wavelength, that the polarization modulation approach even mitigates the need of pulsed lasers by using standard cw lasers and that it allows the DIC prism to be placed at an arbitrary angle. As a consequence the presented experimental solutions for 2fFCS can be more easily implemented into commercial laser scanning microscopes.

© 2014 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.1790) Microscopy : Confocal microscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Spectroscopy

History
Original Manuscript: October 30, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: December 19, 2013
Published: January 8, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Martin Štefl, Aleš Benda, Ingo Gregor, and Martin Hof, "The fast polarization modulation based dual-focus fluorescence correlation spectroscopy," Opt. Express 22, 885-899 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-1-885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976). [CrossRef] [PubMed]
  2. D. Magde, E. L. Elson, W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]
  3. N. L. Thompson, Topics in Fluorescence Spectroscopy (Plenum, 1991), pp. 337–378.
  4. M. J. Saxton, “Single-particle tracking: effects of corrals,” Biophys. J. 69(2), 389–398 (1995). [CrossRef] [PubMed]
  5. P. Schwille, F. J. Meyer-Almes, R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997). [CrossRef] [PubMed]
  6. M. Böhmer, M. Wahl, H. J. Rahn, R. Erdmann, J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5-6), 439–445 (2002). [CrossRef]
  7. Z. Petrášek, P. Schwille, “Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy,” Biophys. J. 94(4), 1437–1448 (2008). [CrossRef] [PubMed]
  8. R. Macháň, M. Hof, “Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy,” Biochim. Biophys. Acta 1798(7), 1377–1391 (2010). [CrossRef] [PubMed]
  9. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, J. Enderlein, “Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007). [CrossRef] [PubMed]
  10. Y. Korlann, T. Dertinger, X. Michalet, S. Weiss, J. Enderlein, “Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy,” Opt. Express 16(19), 14609–14616 (2008). [CrossRef] [PubMed]
  11. S. Felekyan, S. Kalinin, H. Sanabria, A. Valeri, C. A. M. Seidel, “Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules,” ChemPhysChem 13(4), 1036–1053 (2012). [CrossRef] [PubMed]
  12. P. Kapusta, M. Wahl, A. Benda, M. Hof, J. Enderlein, “Fluorescence lifetime correlation spectroscopy,” J. Fluoresc. 17(1), 43–48 (2007). [CrossRef] [PubMed]
  13. P. Kapusta, R. Macháň, A. Benda, M. Hof, “Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook,” Int. J. Mol. Sci. 13(10), 12890–12910 (2012). [CrossRef] [PubMed]
  14. K. Akashi, H. Miyata, H. Itoh, K. J. Kinosita., “Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope,” Biophys. J. 71(6), 3242–3250 (1996). [CrossRef] [PubMed]
  15. A. Benda, V. Fagul’ová, A. Deyneka, J. Enderlein, M. Hof, “Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research,” Langmuir 22(23), 9580–9585 (2006). [CrossRef] [PubMed]
  16. J. Kriegsmann, I. Gregor, I. von der Hocht, J. Klare, M. Engelhard, J. Enderlein, J. Fitter, “Translational diffusion and interaction of a photoreceptor and its cognate transducer observed in giant unilamellar vesicles by using dual-focus FCS,” ChemBioChem 10(11), 1823–1829 (2009). [CrossRef] [PubMed]
  17. C. T. Culbertson, S. C. Jacobson, J. Michael Ramsey, “Diffusion coefficient measurements in microfluidic devices,” Talanta 56(2), 365–373 (2002). [CrossRef] [PubMed]
  18. A. Filippov, G. Orädd, G. Lindblom, “The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers,” Biophys. J. 84(5), 3079–3086 (2003). [CrossRef] [PubMed]
  19. K. Weiss, J. Enderlein, “Lipid diffusion within black lipid membranes measured with dual-focus fluorescence correlation spectroscopy,” ChemPhysChem 13(4), 990–1000 (2012). [CrossRef] [PubMed]
  20. A. Benda, M. Benes, V. Marecek, A. Lhotsky, W. T. Hermens, M. Hof, “How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy,” Langmuir 19(10), 4120–4126 (2003). [CrossRef]
  21. T. Dertinger, A. Loman, B. Ewers, C. B. Müller, B. Krämer, J. Enderlein, “The optics and performance of dual-focus fluorescence correlation spectroscopy,” Opt. Express 16(19), 14353–14368 (2008). [CrossRef] [PubMed]
  22. J. Enderlein, I. Gregor, “Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy,” Rev. Sci. Instrum. 76(3), 033102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited