OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Stabilization method for signal drifts in terahertz chemical microscopy

Toshihiko Kiwa, Kenji Sakai, and Keiji Tsukada  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1330-1335 (2014)
http://dx.doi.org/10.1364/OE.22.001330


View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A stabilization method for signal drifts in terahertz chemical microscopy (TCM) due to unexpected chemical potential changes in sample solutions was proposed and developed. The sensing plate was separated into two areas: a detection area and a control area. The detection area radiated a THz pulse whose amplitude was related to both the chemical reactions in the sample solutions and unexpected potential changes. The THz pulse from the control area was related only to unexpected potential changes. In the proposed system, the THz pulse from each area was interfered and detected. By adjusting the timing of the positive peak of the THz pulse from the detection area and the negative peak of the THz pulse from the control area, we detected the difference in both peaks as the interference signal. Thus, the signal deviation of 390 when the environmental condition changes in the temperature range of 38 °C and the pH range of 8.33 was stabilized to be the signal deviation of 31. As the result, the TCM with stabilization method could detect the signal shift of 121 when the 275-nmol/L immunoglobulin G was immobilized on the sensing plate.

© 2014 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(320.7160) Ultrafast optics : Ultrafast technology
(170.6795) Medical optics and biotechnology : Terahertz imaging

ToC Category:
Terahertz optics

History
Original Manuscript: September 13, 2013
Revised Manuscript: November 24, 2013
Manuscript Accepted: December 2, 2013
Published: January 14, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Toshihiko Kiwa, Kenji Sakai, and Keiji Tsukada, "Stabilization method for signal drifts in terahertz chemical microscopy," Opt. Express 22, 1330-1335 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-2-1330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. F. Keren, “Enzyme-linked immunosorbent assay for immunoglobulin G and immunoglobulin A antibodies to Shigella Flexneri antigens,” Infect. Immun. 24(2), 441–448 (1979). [PubMed]
  2. D. F. Keren, “Parameters affecting an enzyme-linked immunosorbent assay for Igg and Iga antibodies to Shigella-Flexneri antigens,” Fed. Proc. 38, 941 (1979).
  3. B. Johnsson, S. Löfås, G. Lindquist, “Immobilization of proteins to a Carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991). [CrossRef] [PubMed]
  4. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991). [PubMed]
  5. S. Löfås, M. Malmqvist, I. Ronnberg, E. Stenberg, B. Liedberg, I. Lundstrom, “Bioanalysis with Surface-Plasmon Resonance,” Sens. Actuators B Chem. 5(1-4), 79–84 (1991). [CrossRef]
  6. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  8. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007). [CrossRef]
  9. Y. Ogawa, S. Hayashi, M. Oikawa, C. Otani, K. Kawase, “Interference terahertz label-free imaging for protein detection on a membrane,” Opt. Express 16(26), 22083–22089 (2008). [CrossRef] [PubMed]
  10. S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009). [CrossRef]
  11. T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005). [CrossRef]
  12. T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microftuidic chips,” Jpn. J. Appl. Phys. 2(46), L1052–L1054 (2007). [CrossRef]
  13. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008). [CrossRef] [PubMed]
  14. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010). [CrossRef]
  15. T. Kiwa, A. Tenma, S. Takahashi, K. Sakai, K. Tsukada, “Label free immune assay using terahertz chemical microscope,” Sens. Actuators B 187, 8–11 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited