OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1687-1696 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2405 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dependence of the near-field signal on the dielectric function of a specific material proposes scattering-type near-field optical microscopy (s-SNOM) as a viable tool for material characterization studies. Our experiment shows that specific material identification by s-SNOM is not a straightforward task as parameters involved in the detection scheme can also influence material contrast measurements. More precisely, we demonstrate that s-SNOM contrast in a pseudo-heterodyne detection configuration depends on the oscillation amplitude of the reference mirror and that for reliable measurements of the contrast between different materials this aspect needs to be taken into consideration.

© 2014 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(180.5810) Microscopy : Scanning microscopy
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: November 26, 2013
Revised Manuscript: December 27, 2013
Manuscript Accepted: December 27, 2013
Published: January 16, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, "A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy," Opt. Express 22, 1687-1696 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Bek, R. Vogelgesang, K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006). [CrossRef]
  2. Z. H. Kim, S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006). [CrossRef] [PubMed]
  3. T. Taubner, R. Hillenbrand, F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003). [CrossRef] [PubMed]
  4. J. M. Atkin, S. Berweger, A. C. Jones, M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012). [CrossRef]
  5. R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000). [CrossRef] [PubMed]
  6. R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001). [CrossRef] [PubMed]
  7. R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004). [CrossRef] [PubMed]
  8. B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000). [CrossRef]
  9. M. B. Raschke, C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003). [CrossRef]
  10. R. Esteban, R. Vogelgesang, K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007). [CrossRef]
  11. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006). [CrossRef]
  12. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999). [CrossRef]
  13. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012). [CrossRef] [PubMed]
  14. J. E. Hall, G. P. Wiederrecht, S. K. Gray, S. H. Chang, S. Jeon, J. A. Rogers, R. Bachelot, P. Royer, “Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells,” Opt. Express 15(7), 4098–4105 (2007). [CrossRef] [PubMed]
  15. N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006). [CrossRef]
  16. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  17. Z. Nuño, B. Hessler, J. Ochoa, Y. S. Shon, C. Bonney, Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19(21), 20865–20875 (2011). [CrossRef] [PubMed]
  18. M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. G. A. Stanciu, C. Stoichita, R. Hristu, S. G. Stanciu, and D. E. Tranca, “Metallic samples investigated by using a scattering near-field optical microscope,” in Proceedings of the 14 International Conference on the Transparent Optical Networks (ICTON), M. Jaworski, M. Marciniak, eds. (IEEE Comput., New York, 2012), p. 3. [CrossRef]
  21. C. C. Liao, Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).
  22. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999). [CrossRef]
  23. P. de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry,” Appl. Opt. 48(35), 6788–6796 (2009). [CrossRef] [PubMed]
  24. L. P. Yatsenko, B. W. Shore, K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009). [CrossRef]
  25. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007). [CrossRef]
  26. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990). [CrossRef] [PubMed]
  27. R. García, A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited