OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics

Jae-Young Kim, Ho-Jin Song, Makoto Yaita, Akihiko Hirata, and Katsuhiro Ajito  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1735-1741 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2164 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB·Hz and 75 dB·Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

© 2014 Optical Society of America

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Terahertz Optics

Original Manuscript: October 9, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: January 9, 2014
Published: January 17, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Jae-Young Kim, Ho-Jin Song, Makoto Yaita, Akihiko Hirata, and Katsuhiro Ajito, "CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics," Opt. Express 22, 1735-1741 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. K. Ajito, Y. Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Trans. THz Sci. Tech. (Paris) 1, 293–300 (2011).
  3. Z. Yan, Y. Ying, H. Zhang, H. Yu, “Research progress of terahertz wave technology in food inspection,” Proc. SPIE 6373, 63730R (2006). [CrossRef]
  4. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  5. F. Friederich, W. V. Spiegel, M. Bauer, F. Meng, M. D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Löffler, R. Henneberger, A. K. Huhn, G. Spickermann, P. H. Bolívar, H. G. Roskos, “THz Active Imaging Systems With Real-Time Capabilities,” IEEE Trans. THz Sci. Tech. (Paris) 1, 183–200 (2011).
  6. A. W. M. Lee, T.-Y. Kao, D. Burghoff, Q. Hu, J. L. Reno, “Terahertz tomography using quantum-cascade lasers,” Opt. Lett. 37(2), 217–219 (2012). [CrossRef] [PubMed]
  7. J. R. Demers, R. T. Logan, N. J. Bergeron, E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz,” Proc. SPIE 6949, 694909 (2008). [CrossRef]
  8. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010). [CrossRef]
  9. R. Wilk, F. Breitfeld, M. Mikulics, M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008). [CrossRef] [PubMed]
  10. I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86(20), 204104 (2005). [CrossRef]
  11. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011). [CrossRef] [PubMed]
  12. A. M. Sinyukov, Z. Liu, Y. L. Hor, K. Su, R. B. Barat, D. E. Gary, Z.-H. Michalopoulou, I. Zorych, J. F. Federici, D. Zimdars, “Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy,” Opt. Lett. 33(14), 1593–1595 (2008). [CrossRef] [PubMed]
  13. T. Göbel, D. Schoenherr, C. Sydlo, M. Feiginov, P. Meissner, H. L. Hartnagel, “Single-sampling-point coherent detection in continuous-wave photomixing terahertz systems,” Electron. Lett. 45(1), 65–66 (2009). [CrossRef]
  14. J.-Y. Kim, H.-J. Song, K. Ajito, M. Yaita, N. Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range,” IEEE Trans. THz Sci. Tech. (Paris) 3, 158–164 (2013).
  15. S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013). [CrossRef]
  16. M. Suga, Y. Sasaki, T. Sasahara, T. Yuasa, C. Otani, “THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept,” Opt. Express 21(21), 25389–25402 (2013). [CrossRef] [PubMed]
  17. T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013). [CrossRef] [PubMed]
  18. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. Lightwave Technol. 23(12), 4016–4021 (2005). [CrossRef]
  19. D. M. Charron, K. Ajito, J.-Y. Kim, Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013). [CrossRef] [PubMed]
  20. X. Xin, H. Altan, A. Saint, D. Matten, R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited