OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Laser-induced photodynamic effects at silica nanocomposite based on cadmium sulphide quantum dots

S. S. Voznesenskiy, A. A. Sergeev, A. N. Galkina, Yu. N. Kulchin, Yu. A. Shchipunov, and I. V. Postnova  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 2105-2110 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1633 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. We found red shift of luminescence of the nanocomposite when exposed to laser radiation at λ = 405 nm. Using pump-probe method and Small-Angle X-ray Scattering technique it was found that laser radiation at λ = 405 nm also increases the absorption coefficient of the nanocomposite in 15 times due to agglomeration of quantum dots. The modification of absorption properties is fully reversible.

© 2014 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: October 28, 2013
Revised Manuscript: December 25, 2013
Manuscript Accepted: January 14, 2014
Published: January 24, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

S. S. Voznesenskiy, A. A. Sergeev, A. N. Galkina, Yu. N. Kulchin, Yu. A. Shchipunov, and I. V. Postnova, "Laser-induced photodynamic effects at silica nanocomposite based on cadmium sulphide quantum dots," Opt. Express 22, 2105-2110 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011). [CrossRef] [PubMed]
  2. U. Wiedemann, W. Alt, D. Meschede, “Switching photochromic molecules adsorbed on optical microfibres,” Opt. Express 20(12), 12710–12720 (2012). [CrossRef] [PubMed]
  3. Y. Huang, S.-T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12(5), 895–906 (2004). [CrossRef] [PubMed]
  4. S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011). [CrossRef] [PubMed]
  5. H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006). [CrossRef] [PubMed]
  6. D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010). [CrossRef]
  7. K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013). [CrossRef]
  8. Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009). [CrossRef]
  9. E. Ruiz-Hitzky, K. Ariga, and Yu. M. Lvov, Bio-inorganic Hybrid Nanomaterials (Weinheim, 2007), Chap. 3.
  10. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering, G.W. Taylor, ed. (Plenum Press, 1987).
  11. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003). [CrossRef]
  12. D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Cryst. 25(4), 495–503 (1992). [CrossRef]
  13. D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76(6), 2879–2886 (1999). [CrossRef] [PubMed]
  14. J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).
  15. A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010). [CrossRef]
  16. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited