OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response

Vivek Raj Shrestha, Chul-Soon Park, and Sang-Shin Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3691-3704 (2014)
http://dx.doi.org/10.1364/OE.22.003691


View Full Text Article

Enhanced HTML    Acrobat PDF (1702 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The enhancement of color saturation and color gamut has been demonstrated, by taking advantage of a dual-band color filter based on a subwavelength rectangular metal-dielectric resonant grating, which exhibits an adjustable spectral response with respect to its relative transmittances at the two bands of green and red, thereby producing any color in between green and red, through the adjustment of incoming light polarization. Also, the prominent features of the spectral response of the filter, namely the bandwidth and resonant wavelength, can be readily adjusted by varying the dielectric layer thickness and the grating pitch, respectively. The dependence of chromaticity coordinates of the filter in the CIE (International Commission on Illumination) 1931 chromaticity diagram upon the parameters of the spectral response, including the center wavelength, spectral bandwidth and sideband level, has been rigorously examined, and their influence on the color gamut and the excitation purity, which is a colorimetric measure of saturation, has been analytically explored at the same time, in order to optimize the color performance of the filters. In particular, a device with wider spectral bandwidth was observed to efficiently extend the color gamut and enhance the color saturation, i.e. the excitation purity for a given sideband level. Two dual-band green-red filters, exhibiting different bandwidths of about 17 and 36 nm, were specifically designed and fabricated. As compared with the case with narrower bandwidth, the device with wider bandwidth was observed to provide both higher excitation purity leading to better color saturation and greater separation of the chromaticity coordinates for the filter output for different incident polarizations, which provides extended color gamut. The proposed device structure may permit the color tuning span to encompass all primary color bands, by adjusting the grating pitch.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.7400) Optical devices : Waveguides, slab
(330.1730) Vision, color, and visual optics : Colorimetry
(310.6628) Thin films : Subwavelength structures, nanostructures
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: November 29, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: January 29, 2014
Published: February 7, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Vivek Raj Shrestha, Chul-Soon Park, and Sang-Shin Lee, "Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response," Opt. Express 22, 3691-3704 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-3-3691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012). [CrossRef] [PubMed]
  2. Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012). [CrossRef]
  3. T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010). [PubMed]
  4. M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013). [CrossRef] [PubMed]
  5. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011). [CrossRef] [PubMed]
  6. T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012). [CrossRef] [PubMed]
  7. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  8. A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011). [CrossRef]
  9. Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012). [CrossRef]
  10. M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013). [CrossRef] [PubMed]
  11. C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012). [CrossRef] [PubMed]
  12. B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009). [CrossRef]
  13. M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012). [CrossRef]
  14. H. Ichikawa, H. Kikuta, “Dynamic guided-mode resonant grating filter with quadratic electro-optic effect,” J. Opt. Soc. Am. A 22(7), 1311–1318 (2005). [CrossRef] [PubMed]
  15. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010). [CrossRef]
  16. R. Magnusson, M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007). [CrossRef] [PubMed]
  17. C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013). [CrossRef]
  18. CIE, Colorimetry, 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).
  19. R. G. Kuehni, Color: An Introduction to Practice and Principles (John Wiley & Sons, 2013), Chap. 6.
  20. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (John Wiley & Sons, 2000), Chap. 3.
  21. D. Scott Dewald, “Color correction filter for displays,” U.S. Patent 6,231,190 (2001).
  22. L. A. Booth, “Method and apparatus for wide gamut multicolor display,” U.S. Patent 20,030,011,613, (2003).
  23. R. Magnusson, S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34(35), 8106–8109 (1995). [CrossRef] [PubMed]
  24. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Chap. 6.
  25. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011). [CrossRef] [PubMed]
  26. S. T. Thurman, G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  27. D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited