OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions

Santiago Palanco, Salvatore Marino, M. Gabás, Shanti Bijani, Luis Ayala, and José R. Ramos-Barrado  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3991-3999 (2014)
http://dx.doi.org/10.1364/OE.22.003991


View Full Text Article

Enhanced HTML    Acrobat PDF (2170 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The particulate emission during nanosecond ablation of gold targets was investigated at various fluences (10-100 Jcm−2) and vacuum levels (0.05-750 Torr). Atomic emission spectra were acquired during the ablation process and post-mortem characterization of particle spatial distribution was performed using scanning electron microscopy. The discussion of the results in the context of existing theoretical models permitted the identification of four distinct mass removal mechanisms. While the presence, shape and intensity of atomic emission lines is a telltale of the nanoparticle formation process, the fluctuations of the emission signal over a number of laser shots was linked to the production of microscopic debris.

© 2014 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(160.4236) Materials : Nanomaterials

ToC Category:
Laser Microfabrication

History
Original Manuscript: November 1, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 17, 2014
Published: February 13, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Santiago Palanco, Salvatore Marino, M. Gabás, Shanti Bijani, Luis Ayala, and José R. Ramos-Barrado, "Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions," Opt. Express 22, 3991-3999 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-4-3991


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Miller, “A brief story of laser ablation,” AIP Conf. Proc. 288, 619–622 (1993). [CrossRef]
  2. M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013). [CrossRef]
  3. R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013). [CrossRef] [PubMed]
  4. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010).
  5. A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010). [CrossRef] [PubMed]
  6. J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007). [CrossRef]
  7. J. Schou, “Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film,” Appl. Surf. Sci. 255(10), 5191–5198 (2009). [CrossRef]
  8. S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007). [CrossRef]
  9. S. Palanco, J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42(30), 6078–6084 (2003). [CrossRef] [PubMed]
  10. S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004). [CrossRef]
  11. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999). [CrossRef]
  12. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006). [CrossRef]
  13. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006). [CrossRef]
  14. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012). [CrossRef]
  15. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998). [CrossRef]
  16. P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000). [CrossRef]
  17. E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008). [CrossRef]
  18. B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).
  19. P. M. Ossi, “Cluster synthesis and cluster-assembled deposition in nanosecond pulsed laser ablation,” in Laser-Surface Interactions for New Materials Production, A. Miotello and P. M. Ossi, eds. (Springer, 2010).
  20. Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).
  21. R. E. Russo, X. Mao, J. H. Yoo, and J. Gonzalez, “Laser ablation,” in Laser-Induced Breakdown Spectroscopy, S. N. Thakur and J. P. Singh, eds. (Elsevier, 2008).
  22. J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011). [CrossRef] [PubMed]
  23. X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).
  24. R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).
  25. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000). [CrossRef]
  26. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  27. C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008). [CrossRef]
  28. D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000). [CrossRef]
  29. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003). [CrossRef]
  30. D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006). [CrossRef]
  31. A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009). [CrossRef]
  32. N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001). [CrossRef]
  33. M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007). [CrossRef]
  34. Gwyddion software package V2.29, GNU General Public License, 2012, http://gwyddion.net
  35. G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 159–174 (1950). [CrossRef]
  36. G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 175–186 (1950). [CrossRef]
  37. L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited