OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Plasmonic particles set into fast orbital motion by an optical vortex beam

Anni Lehmuskero, Yanming Li, Peter Johansson, and Mikael Käll  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4349-4356 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1584 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We optically trap plasmonic gold particles in two dimensions and set them into circular motion around the optical axis using a helically phased vortex laser beam. The orbiting frequency of the particles reaches 86 Hz, which corresponds to a particle velocity of the order 1 mm per second, for an incident laser power of a few tens of milliwatts. The experimentally determined orbiting frequencies are found to be well in line with the notion that the beam carries an orbital angular momentum of ħl per photon.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(080.4865) Geometric optics : Optical vortices

ToC Category:

Original Manuscript: December 26, 2013
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 10, 2014
Published: February 18, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Anni Lehmuskero, Yanming Li, Peter Johansson, and Mikael Käll, "Plasmonic particles set into fast orbital motion by an optical vortex beam," Opt. Express 22, 4349-4356 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [CrossRef]
  2. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995). [CrossRef] [PubMed]
  4. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008). [CrossRef] [PubMed]
  5. K. Ladavac, D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004). [CrossRef] [PubMed]
  6. T. Kolb and G. Whyte, “Rotation of optically trapped living cells for single-cell tomography,” in Optics in the Life Sciences Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper TM4D.4. [CrossRef]
  7. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef] [PubMed]
  8. Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011). [CrossRef] [PubMed]
  9. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004). [CrossRef] [PubMed]
  10. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006). [CrossRef] [PubMed]
  11. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001). [CrossRef]
  12. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001). [CrossRef]
  13. L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010). [CrossRef] [PubMed]
  14. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013). [CrossRef] [PubMed]
  15. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002). [CrossRef]
  16. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003). [CrossRef] [PubMed]
  17. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002). [CrossRef]
  18. A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef] [PubMed]
  19. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007). [CrossRef] [PubMed]
  20. K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005). [CrossRef]
  21. Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010). [CrossRef]
  22. S. C. Tiwari, “Geometrical phase in optics; quantal or classical?” J. Mod. Opt. 39, 1097–1105 (1992). [CrossRef]
  23. M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987). [CrossRef]
  24. J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  25. A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007). [CrossRef]
  26. R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001). [CrossRef]
  27. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011). [CrossRef] [PubMed]
  28. D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010). [CrossRef] [PubMed]
  29. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, 1991).
  30. M. J. Padgett, “On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum,” Opt. Express 16(25), 20864–20868 (2008). [CrossRef] [PubMed]
  31. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52(3), 133–201 (1979). [CrossRef]
  32. Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (197 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited