OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures

Yineng Liu, Rongyao Wang, and Xiangdong Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4357-4370 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, there are great interest in studying the interaction between chiral molecules and plasmonic particles, because a weak circular dichroism (CD) signal in the ultraviolet (UV) region from chiral molecules can be both enhanced and transferred to the visible wavelength range by using plasmonic particles. Thus, ultrasensitive probe of tiny amounts of chiral substance by CD are worth waiting for. Here we present another way to strongly enhance CD of chiral molecules by using plasmonic particle cluster, which need not transfer to the visible wavelength. The method to calculate CD of chiral molecules in nanosphere clusters has been developed by means of multiple scattering of electromagnetic multipole fields. Our calculated results show that 2 orders of magnitude CD enhancement in the UV region for chiral molecules can be realized. Such a CD enhancement is very sensitive to the cluster structure. The cluster structure can cause chiroptical illusion in which a mirror symmetry in the CD spectra of opposite enantiomeric molecules is broken. The correction of quantum size effect on the phenomenon has also been considered. Our findings open up an alternative avenue for the ultrasensitive detection and illusion of chiral information.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: January 3, 2014
Manuscript Accepted: February 10, 2014
Published: February 18, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Yineng Liu, Rongyao Wang, and Xiangdong Zhang, "Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures," Opt. Express 22, 4357-4370 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Plenum, 1996).
  2. G. H. Wagniere, On chirality and the universal asymmetry: reflections on image and mirror image (VHCA with Wiley-VCH, 2007).
  3. N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy (John Wiley and Sons Inc.: New York, 2012).
  4. D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013). [CrossRef] [PubMed]
  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  6. W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998). [CrossRef] [PubMed]
  7. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  8. W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008). [CrossRef] [PubMed]
  9. Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007). [CrossRef] [PubMed]
  10. F. J. García de Abajo, “Rev. Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  11. S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  12. K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).
  13. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010). [CrossRef] [PubMed]
  14. S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  15. H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999). [CrossRef]
  16. L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013). [CrossRef] [PubMed]
  17. V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  18. C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009). [CrossRef]
  19. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005). [CrossRef] [PubMed]
  20. I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008). [CrossRef] [PubMed]
  21. J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010). [CrossRef] [PubMed]
  22. Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012). [CrossRef] [PubMed]
  23. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011). [CrossRef] [PubMed]
  24. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010). [CrossRef] [PubMed]
  25. Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010). [CrossRef] [PubMed]
  26. J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011). [CrossRef] [PubMed]
  27. B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012). [CrossRef] [PubMed]
  28. R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011). [CrossRef]
  29. N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011). [CrossRef] [PubMed]
  30. V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012). [CrossRef]
  31. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012). [CrossRef] [PubMed]
  32. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012). [CrossRef] [PubMed]
  33. Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012). [CrossRef] [PubMed]
  34. W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012). [CrossRef] [PubMed]
  35. B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013). [CrossRef] [PubMed]
  36. F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013). [CrossRef] [PubMed]
  37. H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013). [CrossRef]
  38. J. Xu, X. D. Zhang, “Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres,” Opt. Express 20(2), 1668–1684 (2012). [CrossRef] [PubMed]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  40. J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009). [PubMed]
  41. R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012). [CrossRef] [PubMed]
  42. J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012). [CrossRef] [PubMed]
  43. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012). [CrossRef] [PubMed]
  44. R. A. de la Osa, J. M. Sanz, J. M. Saiz, F. González, F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012). [CrossRef] [PubMed]
  45. W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited