OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Theoretical analysis for the optical deformation of emulsion droplets

David Tapp, Jonathan M. Taylor, Alex S. Lubansky, Colin D. Bain, and Buddhapriya Chakrabarti  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4523-4538 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6569 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.

© 2014 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.0240) Optics at surfaces : Optics at surfaces
(240.6700) Optics at surfaces : Surfaces
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 1, 2013
Revised Manuscript: January 8, 2014
Manuscript Accepted: January 19, 2014
Published: February 20, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

David Tapp, Jonathan M. Taylor, Alex S. Lubansky, Colin D. Bain, and Buddhapriya Chakrabarti, "Theoretical analysis for the optical deformation of emulsion droplets," Opt. Express 22, 4523-4538 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Ward, M. G. Berry, C. D. Mellor, C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006). [CrossRef]
  2. D. A. Woods, C. D. Mellor, J. M. Taylor, C. D. Bain, A. D. Ward, “Nanofluidic networks created and controlled by light,” Soft Matter 7, 2517–2520 (2011). [CrossRef]
  3. R. Karlsson, A. Karlsson, A. Ewing, P. Dommersnes, J.-F. Joanny, A. Jesorka, O. Orwar, “Chemical analysis in nanoscale surfactant networks,” Anal. Chem. 78, 5961–5968 (2006). [CrossRef] [PubMed]
  4. G. Hirasaki, C. Miller, M. Puerto, “Recent advances in surfactant EOR,” SPE J. 16, 889–907 (2011) [CrossRef]
  5. P. J. H. Bronkhorst, G. J. Streekstra, J. Grinbergen, E. J. Nijhof, J. J. Sixma, G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995). [CrossRef] [PubMed]
  6. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Lett. 84, 5451–5454 (2000). [CrossRef]
  7. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef] [PubMed]
  8. J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12, 1179–1184 (2004). [CrossRef] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  10. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  11. P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, “Expanding the optical trapping range of Gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005). [CrossRef] [PubMed]
  12. D. McGloin, “Optical tweezers: 20 years on,” Philos. Trans. R. Soc. A 364, 3521–3537 (2006). [CrossRef]
  13. S. Block, L. Goldstein, B. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990). [CrossRef] [PubMed]
  14. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008). [CrossRef] [PubMed]
  15. R. J. Davenport, G. J. Wuite, R. Landick, C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287, 2497–2500 (2000). [CrossRef] [PubMed]
  16. A. Ashkin, J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973). [CrossRef]
  17. A. Casner, J.-P. Delville, “Giant deformations of a liquid-liquid interface induced by the optical radiation pressure,” Phys. Rev. Lett. 87, 054503 (2001). [CrossRef] [PubMed]
  18. J.-Z. Zhang, R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916–918 (1988). [CrossRef] [PubMed]
  19. E. Evans, A. Yeung, “Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration,” Biophys. J. 56, 151–160 (1989). [CrossRef] [PubMed]
  20. H. M. Lai, P. T. Leung, K. L. Poon, K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430–2437 (1989). [CrossRef]
  21. I. Brevik, R. Kluge, “Oscillations of a water droplet illuminated by a linearly polarized laser pulse,” J. Opt. Soc. Am. B 16, 976–985 (1999). [CrossRef]
  22. H. Chrabi, D. Lasseux, E. Arquis, R. Wunenburger, J.-P. Delville, “Stretching and squeezing of sessile dielectric drops by the optical radiation pressure,” Phys. Rev. E 77, 066706 (2008). [CrossRef]
  23. P. C. F. Møller, L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” Europhys. Lett. 88, 48005 (2009). [CrossRef]
  24. S. Å. Ellingsen, “Theory of microdroplet and microbubble deformation by Gaussian laser beam,” J. Opt. Soc. Am. B 30, 1694–1710 (2013). [CrossRef]
  25. M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: a tutorial review,” J. Quantum Spectrosc. Radiat. Transfer 110, 808–832 (2009). [CrossRef]
  26. F. Xu, J. Lock, G. Gouesbet, C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009). [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  28. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  29. J. P. Barton, D. R. Alexander, “Fifthorder corrected electromagnetic field components for a fundamental Gaussian beam,” Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  30. A. E. Siegman, Lasers (University Science, 1986).
  31. M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, 1975), Vol. III.
  32. D. Blackmore, L. Ting, “Surface integral of its mean curvature vector,” SIAM Rev. 27, 569–572 (1985) [CrossRef]
  33. M. Goffredi, V. T. Liveri, G. J. Vassallo, “Refractive index of water-AOT-n-heptane microemulsions,” J. Solut. Chem. 22, 941–949 (1993). [CrossRef]
  34. H. A. Stone, J. R. Lister, M. P. Brenner, “Drops with conical ends in electric and magnetic fields,” Proc. R. Soc. London A 455, 329–347 (1999). [CrossRef]
  35. G. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London A 280, 383–397 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited