OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Embedded pupil function recovery for Fourier ptychographic microscopy

Xiaoze Ou, Guoan Zheng, and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 4960-4972 (2014)
http://dx.doi.org/10.1364/OE.22.004960


View Full Text Article

Enhanced HTML    Acrobat PDF (2954 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop and test a pupil function determination algorithm, termed embedded pupil function recovery (EPRY), which can be incorporated into the Fourier ptychographic microscopy (FPM) algorithm and recover both the Fourier spectrum of sample and the pupil function of imaging system simultaneously. This EPRY-FPM algorithm eliminates the requirement of the previous FPM algorithm for a priori knowledge of the aberration in the imaging system to reconstruct a high quality image. We experimentally demonstrate the effectiveness of this algorithm by reconstructing high resolution, large field-of-view images of biological samples. We also illustrate that the pupil function we retrieve can be used to study the spatially varying aberration of a large field-of-view imaging system. We believe that this algorithm adds more flexibility to FPM and can be a powerful tool for the characterization of an imaging system’s aberration.

© 2014 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(180.0180) Microscopy : Microscopy

ToC Category:
Image Processing

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 17, 2014
Published: February 24, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Xiaoze Ou, Guoan Zheng, and Changhuei Yang, "Embedded pupil function recovery for Fourier ptychographic microscopy," Opt. Express 22, 4960-4972 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-4960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zheng, R. Horstmeyer, C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013). [CrossRef]
  2. A. Lohmann, R. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996). [CrossRef]
  3. G. Zheng, X. Ou, R. Horstmeyer, C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013). [CrossRef] [PubMed]
  4. H. Nomura, T. Sato, “Techniques for measuring aberrations in lenses used in photolithography with printed patterns,” Appl. Opt. 38(13), 2800–2807 (1999). [CrossRef] [PubMed]
  5. J. Wesner, J. Heil, and Th. Sure, “Reconstructing the pupil function of microscope objectives from the intensity PSF,” in Current Developments in Lens Design and Optical Engineering III, R. E. Fischer, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 4767, 32–43 (2002).
  6. Z. Bian, S. Dong, G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013). [CrossRef] [PubMed]
  7. X. Ou, R. Horstmeyer, C. Yang, G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  8. W. Hoppe, “Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference,” Acta Crystallogr. A 25, 495–501 (1969). [CrossRef]
  9. J. Rodenburg, R. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. Lond. A 339(1655), 521–553 (1992). [CrossRef]
  10. J. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008). [CrossRef]
  11. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  12. J. M. Rodenburg, H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004). [CrossRef]
  13. F. Hüe, J. Rodenburg, A. Maiden, F. Sweeney, P. Midgley, “Wave-front phase retrieval in transmission electron microscopy via ptychography,” Phys. Rev. B 82(12), 121415 (2010). [CrossRef]
  14. H. M. L. Faulkner, J. M. Rodenburg, “Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy,” Ultramicroscopy 103(2), 153–164 (2005). [CrossRef] [PubMed]
  15. M. Guizar-Sicairos, J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  16. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008). [CrossRef] [PubMed]
  17. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009). [CrossRef] [PubMed]
  18. A. M. Maiden, J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009). [CrossRef] [PubMed]
  19. A. Maiden, J. Rodenburg, and M. Humphry, “A new method of high resolution, quantitative phase scanning microscopy,” in: M.T. Postek, D.E. Newbury, S.F. Platek, D.C. Joy (Eds.), SPIE Proceedings of Scanning Microscopy, 7729, 2010. [CrossRef]
  20. J. Marrison, L. Räty, P. Marriott, P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013). [CrossRef] [PubMed]
  21. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36(32), 8352–8357 (1997). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  23. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33(34), 8121–8124 (1994). [CrossRef] [PubMed]
  24. G. Zheng, X. Ou, C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014). [CrossRef] [PubMed]
  25. M. Watanabe, S. K. Nayar, “Telecentric optics for focus analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1360–1365 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited