OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

GPC Light Shaper for speckle-free one- and two-photon contiguous pattern excitation

Andrew Bañas, Darwin Palima, Mark Villangca, Thomas Aabo, and Jesper Glückstad  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5299-5311 (2014)
http://dx.doi.org/10.1364/OE.22.005299


View Full Text Article

Enhanced HTML    Acrobat PDF (1623 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for excitation in two-photon optogenetics. To fully utilize typical Gaussian lasers in such applications, we analytically derive conditions for photon efficient light shaping with GPC. When combined with the conditions for optimal contrast developed in previous works, our analysis further simplifies GPC’s implementation. The results of our analysis are applied to practical illumination shapes, such as a circle and different rectangles commonly used in industrial or commercial applications. We also show simple and efficient beam shaping of arbitrary shapes geared towards biophotonics research and other contemporary applications. Optimized GPC configurations consistently give ~84% efficiency and ~3x intensity gain. Assessment of the energy savings when comparing to conventional amplitude masking show that ~93% of typical energy losses are saved with optimized GPC configurations.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: January 17, 2014
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 20, 2014
Published: February 27, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Andrew Bañas, Darwin Palima, Mark Villangca, Thomas Aabo, and Jesper Glückstad, "GPC Light Shaper for speckle-free one- and two-photon contiguous pattern excitation," Opt. Express 22, 5299-5311 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-5299


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012). [CrossRef] [PubMed]
  2. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010). [CrossRef] [PubMed]
  3. E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013). [PubMed]
  4. D. Palima, C. A. Alonzo, P. J. Rodrigo, J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007). [CrossRef] [PubMed]
  5. T. R. M. Sales, R. P. C. Photonics, C. Road, R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003). [CrossRef]
  6. C. Kopp, L. Ravel, P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999). [CrossRef]
  7. J. A. Hoffnagle, C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000). [CrossRef] [PubMed]
  8. S. K. Case, P. R. Haugen, O. J. Løkberg, “Multifacet holographic optical elements for wave front transformations,” Appl. Opt. 20(15), 2670–2675 (1981). [CrossRef] [PubMed]
  9. I. Gur, D. Mendlovic, “Diffraction limited domain flat-top generator,” Opt. Commun. 145(1-6), 237-248 (1998).
  10. W. B. Veldkamp, “Laser beam profile shaping with interlaced binary diffraction gratings,” Appl. Opt. 21(17), 3209–3212 (1982). [CrossRef] [PubMed]
  11. M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003). [CrossRef]
  12. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” in Proc. of SPIE, A. Duparré and R. Geyl, eds. (2008), Vol. 7102, p. 71020J–71020J–12.
  13. J. Glückstad, P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40(2), 268–282 (2001). [CrossRef] [PubMed]
  14. S. Tauro, A. Bañas, D. Palima, J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express 19(8), 7106–7111 (2011). [CrossRef] [PubMed]
  15. A. W. Lohmann, D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967). [CrossRef] [PubMed]
  16. W. H. Lee, “Sampled fourier transform hologram generated by computer,” Appl. Opt. 9(3), 639–643 (1970). [CrossRef] [PubMed]
  17. J. Glückstad and D. Z. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer Series in Optical Sciences, 2009).
  18. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  19. M. A. Go, C. Stricker, S. Redman, H.-A. Bachor, V. R. Daria, “Simultaneous multi-site two-photon photostimulation in three dimensions,” J Biophotonics 5(10), 745–753 (2012). [CrossRef] [PubMed]
  20. L. Ge, M. Duelli, R. Cohn, “Enumeration of illumination and scanning modes from real-time spatial light modulators,” Opt. Express 7(12), 403–416 (2000). [CrossRef] [PubMed]
  21. T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad,D. L. Andrews, E. J. Galvez, and J. Glückstad, eds., “Functionalized 2PP structures for the BioPhotonics Workstation,” in Proceedings of SPIE, D. L. Andrews, E. J. Galvez, and J. Glückstad, eds. (2011), Vol. 7950, p. 79500Q. [CrossRef]
  22. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13(18), 6899–6904 (2005). [CrossRef] [PubMed]
  23. Y. Tanaka, S. Tsutsui, M. Ishikawa, H. Kitajima, “Hybrid optical tweezers for dynamic micro-bead arrays,” Opt. Express 19(16), 15445–15451 (2011). [CrossRef] [PubMed]
  24. S. Tauro, A. Bañas, D. Palima, J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010). [CrossRef] [PubMed]
  25. D. Palima, J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16(2), 1331–1342 (2008). [CrossRef] [PubMed]
  26. J. Glückstad, L. Lading, H. Toyoda, T. Hara, “Lossless light projection,” Opt. Lett. 22(18), 1373–1375 (1997). [CrossRef] [PubMed]
  27. F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955). [CrossRef] [PubMed]
  28. V. Nourrit, J.-L. de Bougrenet de la Tocnaye, P. Chanclou, “Propagation and diffraction of truncated Gaussian beams,” J. Opt. Soc. Am. A 18(3), 546 (2001). [CrossRef]
  29. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  30. A. Bañas, D. Palima, J. Glückstad, “Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming,” Opt. Express 20(9), 9705–9712 (2012). [CrossRef] [PubMed]
  31. D. Palima, J. Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express 16(3), 1507–1516 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited