OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Sparsely sampled Fourier ptychography

Siyuan Dong, Zichao Bian, Radhika Shiradkar, and Guoan Zheng  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5455-5464 (2014)
http://dx.doi.org/10.1364/OE.22.005455


View Full Text Article

Enhanced HTML    Acrobat PDF (3846 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier ptychography (FP) is an imaging technique that applies angular diversity functions for high-resolution complex image recovery. The FP recovery routine switches between two working domains: the spectral and spatial domains. In this paper, we investigate the spectral-spatial data redundancy requirement of the FP recovery process. We report a sparsely sampled FP scheme by exploring the sampling interplay between these two domains. We demonstrate the use of the reported scheme for bypassing the high-dynamic-range combination step in the original FP recovery routine. As such, it is able to shorten the acquisition time of the FP platform by ~50%. As a special case of the sparsely sample FP, we also discuss a sub-sampled scheme and demonstrate its application in solving the pixel aliasing problem plagued in the original FP algorithm. We validate the reported schemes with both simulations and experiments. This paper provides insights for the development of the FP approach.

© 2014 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(170.0180) Medical optics and biotechnology : Microscopy
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: January 21, 2014
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 18, 2014
Published: February 28, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Siyuan Dong, Zichao Bian, Radhika Shiradkar, and Guoan Zheng, "Sparsely sampled Fourier ptychography," Opt. Express 22, 5455-5464 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-5455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zheng, R. Horstmeyer, C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013). [CrossRef]
  2. X. Ou, R. Horstmeyer, C. Yang, G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  3. Z. Bian, S. Dong, G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013). [CrossRef] [PubMed]
  4. M. Ryle, A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220 (1960).
  5. V. Mico, Z. Zalevsky, J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006). [CrossRef] [PubMed]
  6. J. García, Z. Zalevsky, D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005). [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, P. García-Martínez, J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  8. V. Mico, Z. Zalevsky, P. Garcia-Martinez, J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12(12), 2589–2596 (2004). [CrossRef] [PubMed]
  9. S. A. Alexandrov, T. R. Hillman, T. Gutzler, D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  10. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47(30), 5654–5659 (2008). [CrossRef] [PubMed]
  11. T. R. Hillman, T. Gutzler, S. A. Alexandrov, D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  12. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  13. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978). [CrossRef] [PubMed]
  14. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  15. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982).
  16. R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4(1), 166–170 (1987). [CrossRef]
  17. L. Allen, M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  18. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20(1), 40–55 (2003). [CrossRef] [PubMed]
  19. L. Waller, S. S. Kou, C. J. R. Sheppard, G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  20. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013). [CrossRef] [PubMed]
  21. H. M. L. Faulkner, J. M. Rodenburg, “Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004). [CrossRef] [PubMed]
  22. M. Guizar-Sicairos, J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  23. J. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008). [CrossRef]
  24. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer, “High-Resolution Scanning X-ray Diffraction Microscopy,” Science 321(5887), 379–382 (2008). [CrossRef] [PubMed]
  25. A. M. Maiden, J. M. Rodenburg, M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett. 35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  26. M. Humphry, B. Kraus, A. Hurst, A. Maiden, J. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging,” Nat. Commun. 3, 730 (2012).
  27. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011). [CrossRef] [PubMed]
  28. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  29. Y. Sung, W. Choi, N. Lue, R. R. Dasari, Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7(11), e49502 (2012). [CrossRef] [PubMed]
  30. C. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
  31. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011). [CrossRef] [PubMed]
  32. S. A. Lee, G. Zheng, N. Mukherjee, C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip 12(13), 2385–2390 (2012). [CrossRef] [PubMed]
  33. G. Zheng, C. Kolner, C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011). [CrossRef] [PubMed]
  34. G. Zheng, X. Ou, R. Horstmeyer, C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013). [CrossRef] [PubMed]
  35. T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pešić, T. A. Waigh, J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87(5), 053850 (2013). [CrossRef]
  36. R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Sig. Proc. Mag. 24(4), 118–121 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited