OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

X-ray micro-modulated luminescence tomography (XMLT)

Wenxiang Cong, Fenglin Liu, Chao Wang, and Ge Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5572-5580 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1459 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

Original Manuscript: November 15, 2013
Revised Manuscript: December 26, 2013
Manuscript Accepted: January 13, 2014
Published: March 4, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Wenxiang Cong, Fenglin Liu, Chao Wang, and Ge Wang, "X-ray micro-modulated luminescence tomography (XMLT)," Opt. Express 22, 5572-5580 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Timpson, E. J. McGhee, K. I. Anderson, “Imaging molecular dynamics in vivo - from cell biology to animal models,” J. Cell Sci. 124(17), 2877–2890 (2011). [CrossRef] [PubMed]
  2. K. R. Chien, “Regenerative medicine and human models of human disease,” Nature 453(7193), 302–305 (2008). [CrossRef] [PubMed]
  3. C. Weinand, J. W. Xu, G. M. Peretti, L. J. Bonassar, T. J. Gill, “Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants,” J. Biomed. Mater. Res. B Appl. Biomater. 91B(1), 80–87 (2009). [CrossRef] [PubMed]
  4. A. Solanki, J. D. Kim, K. B. Lee, “Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging,” Nanomedicine 3(4), 567–578 (2008). [CrossRef] [PubMed]
  5. S. D. Perrault, W. C. Chan, “In vivo assembly of nanoparticle components to improve targeted cancer imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(25), 11194–11199 (2010). [CrossRef] [PubMed]
  6. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2004). [CrossRef] [PubMed]
  7. S. J. Shin, J. R. Beech, K. A. Kelly, “Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer,” Integr Biol 5(1), 29–42 (2013). [CrossRef] [PubMed]
  8. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004). [CrossRef] [PubMed]
  9. S. M. Nie, Y. Xing, G. J. Kim, J. W. Simons, “Nanotechnology applications in cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007). [CrossRef] [PubMed]
  10. 10C. Ricci, L. Moroni, S. Danti, “Cancer tissue engineering: new perspectives in understanding the biology of solid tumors: A critical review,” OA Tissue Eng. 1(1), 4 (2013).
  11. A. S. Goy, M. Unser, D. Psaltis, “Multiple contrast metrics from the measurements of a digital confocal microscope,” Biomed. Opt. Express 4(7), 1091–1103 (2013). [CrossRef] [PubMed]
  12. N. Jalili, K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics 14(8), 907–945 (2004). [CrossRef]
  13. W. T. Pong, C. Durkan, “A review and outlook for an anomaly of scanning tunnelling microscopy (STM): Superlattices on graphite,” J. Phys. D Appl. Phys. 38(21), R329–R355 (2005). [CrossRef]
  14. C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, W. H. Wernsdorfer, “A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT),” Am. J. Trop. Med. Hyg. 77(6), 119–127 (2007). [PubMed]
  15. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef] [PubMed]
  16. X. Cai, Y. S. Zhang, Y. Xia, L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013). [CrossRef] [PubMed]
  17. F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013). [CrossRef] [PubMed]
  18. Z. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012). [CrossRef] [PubMed]
  19. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005). [CrossRef] [PubMed]
  20. W. Cong, C. Wang, G. Wang, “Stored luminescence computed tomography,” Int. J. Eng. Innovative Technol. (to be published).
  21. C. David, S. Gorelick, S. Rutishauser, J. Krzywinski, J. Vila-Comamala, V. A. Guzenko, O. Bunk, E. Färm, M. Ritala, M. Cammarata, D. M. Fritz, R. Barrett, L. Samoylova, J. Grünert, H. Sinn, “Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates,” Sci. Rep. 1, 57 (2011). [CrossRef] [PubMed]
  22. J. Vila-Comamala, Y. Pan, J. J. Lombardo, W. M. Harris, W. K. Chiu, C. David, Y. Wang, “Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy,” J. Synchrotron Radiat. 19(5), 705–709 (2012). [CrossRef] [PubMed]
  23. S. Wu, Y. Hwu, G. Margaritondo, “Hard-X-ray zone plates: recent progress,” Materials 5(12), 1752–1773 (2012). [CrossRef]
  24. S. A. Prahl, “Optical properties spectra,” Oregon Medical Laser Clinic, http://omlc.ogi.edu/spectra/index.html , 2001.
  25. A. D. Klose, E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006). [CrossRef]
  26. A. D. Kim, J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20(1), 92–98 (2003). [CrossRef] [PubMed]
  27. G. Y. Panasyuk, V. A. Markel, J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005). [CrossRef]
  28. J. Welch and M. J. C. Van Gemert, Optical and Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  29. A. Ishimaru, Wave Propagation and Scattering in Random Media (Oxford University, 1997).
  30. A. Liemert, A. Kienle, “Analytical Green’s function of the radiative transfer radiance for the infinite medium,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(3), 036605 (2011). [CrossRef] [PubMed]
  31. B. W. Rice, M. D. Cable, M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001). [CrossRef] [PubMed]
  32. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994). [CrossRef] [PubMed]
  33. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  34. M. Chang, L. Li, Z. Q. Chen, Y. S. Xiao, L. Zhang, G. Wang, “A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction,” J. XRay Sci. Technol. 21(2), 161–176 (2013). [PubMed]
  35. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  36. G. Pratx, C. M. Carpenter, C. Sun, L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited