OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

A compact source condition for modelling focused fields using the pseudospectral time-domain method

Peter R.T. Munro, Daniel Engelke, and David D. Sampson  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5599-5613 (2014)
http://dx.doi.org/10.1364/OE.22.005599


View Full Text Article

Enhanced HTML    Acrobat PDF (2051 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The pseudospectral time-domain (PSTD) method greatly extends the physical volume of biological tissue in which light scattering can be calculated, relative to the finite-difference time-domain (FDTD) method. We have developed an analogue of the total-field scattered-field source condition, as employed in FDTD, for introducing focussed illuminations into PSTD simulations. This new source condition requires knowledge of the incident field, and applies update equations, at a single plane in the PSTD grid. Numerical artifacts, usually associated with compact PSTD source conditions, are minimized by using a staggered grid. This source condition’s similarity with that used by the FDTD suggests a way in which existing FDTD codes can be easily adapted to PSTD codes.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(180.0180) Microscopy : Microscopy
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Scattering

History
Original Manuscript: January 2, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 21, 2014
Published: March 4, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Peter R.T. Munro, Daniel Engelke, and David D. Sampson, "A compact source condition for modelling focused fields using the pseudospectral time-domain method," Opt. Express 22, 5599-5613 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-5599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Lett. 15, 158–165 (1997). [CrossRef]
  2. Q. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,” IEEE T. Geosci. Remote 37, 917–926 (1999). [CrossRef]
  3. D. Kosloff, E. Baysal, “Forward modeling by a Fourier method,” Geophysics 47, 1402–1412 (1982). [CrossRef]
  4. J. Virieux, S. Operto, “An overview of full-waveform inversion in exploration geophysics,” Geophysics 74, WCC127 (2009). [CrossRef]
  5. M. Ding, K. Chen, “Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling,” Opt. Express 18, 9236–9250 (2010). [CrossRef] [PubMed]
  6. S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005). [CrossRef] [PubMed]
  7. G. Chen, P. Yang, G. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25, 785–789 (2008). [CrossRef]
  8. S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium,” Opt. Lett. 29, 1393–1395 (2004). [CrossRef] [PubMed]
  9. T. -W. Lee, S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antenn. Wirel. Pr. 3, 253–256 (2004). [CrossRef]
  10. X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004). [CrossRef]
  11. D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980). [CrossRef]
  12. J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939). [CrossRef]
  13. P. Petre, T. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE T. Antenn. Propag. 40, 1348–1356 (1992). [CrossRef]
  14. C. Balanis, Advanced Engineering Electromagnetics (John Wiley and Sons, 1989).
  15. H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pur. Appl. Math. 3, 355–391 (1950). [CrossRef]
  16. R. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  17. A. Taflove, S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).
  18. A. Taflove, A. Oskooi, S. Johnson, eds., Advances in FDTD Computational Electrodynamics. Photonics and Nanotechnology (Artech House, 2013).
  19. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966). [CrossRef]
  20. P. Török, P. R. T. Munro, E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008).
  21. Z. Lin, L. Thylen, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009). [CrossRef]
  22. Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002). [CrossRef]
  23. A. Oskooi, S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, S. G. Johnson, eds. (Artech House, 2013), pp. 65–100.
  24. V. Čížek, Discrete Fourier Transforms and Their Applications (Adam Hilger, 1986).
  25. T. Özdenvar, G. A. McMechan, “Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation,” Geophy. J. Int. 126, 819–828 (1996). [CrossRef]
  26. H. -W. Chen, “Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional media,” J. Acoust. Soc. Am. 100, 120–131 (1996). [CrossRef]
  27. C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012). [CrossRef]
  28. G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012). [CrossRef]
  29. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems ii. Structure of the image field in an aplanatic system,” P. R. Soc. A 253, 358–379 (1959). [CrossRef]
  30. S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited