OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope

James A. Germann and Lloyd M. Davis  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5641-5650 (2014)
http://dx.doi.org/10.1364/OE.22.005641


View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report high sensitivity detection and tracking of a single fluorescent nanoparticle in solution by use of four alternately pulsed laser diodes for fluorescence excitation in a confocal microscope. Slight offsets between the centers of the overlapping laser foci together with time-resolved photon counting enable sub-micron precision position measurements. Real-time correction for diffusional motion with a xyz-piezo stage then enables tracking of a nanoparticle with diffusivity up to ~12 μm2 s−1. Fluorescence correlation spectroscopy and calibration measurements indicate a net fluorescence photon detection efficiency of ~6–9%, comparable to that of an optimized single-molecule microscope.

© 2014 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: January 30, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 24, 2014
Published: March 4, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
James A. Germann and Lloyd M. Davis, "Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope," Opt. Express 22, 5641-5650 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-5641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12596–12602 (2007). [CrossRef] [PubMed]
  2. H. Cang, C. S. Xu, H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008). [CrossRef]
  3. A. Dupont, D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011). [CrossRef] [PubMed]
  4. K. Baba, K. Nishida, “Single-molecule tracking in living cells using single quantum dot applications,” Theranostics 2(7), 655–667 (2012). [CrossRef] [PubMed]
  5. A. Dupont, M. Gorelashvili, V. Schuller, F. Wehnekamp, D. Arcizet, Y. Katayama, D. C. Lamb, D. Heinrich, “Three-dimensional single-particle tracking in live cells: News from the third dimension,” New J. Phys. 15(075008), 1–17 (2013).
  6. S. Ram, D. Kim, R. J. Ober, E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012). [CrossRef] [PubMed]
  7. J. K. King, B. K. Canfield, L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution,” Appl. Phys. Lett. 103(043102), 1–5 (2013), doi:. [CrossRef]
  8. M. Badieirostami, M. D. Lew, M. A. Thompson, W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010), doi:. [CrossRef] [PubMed]
  9. M. F. Juette, J. Bewersdorf, “Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution,” Nano Lett. 10(11), 4657–4663 (2010). [CrossRef] [PubMed]
  10. A. J. Berglund, K. McHale, H. Mabuchi, “Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit,” Opt. Lett. 32(2), 145–147 (2007). [CrossRef] [PubMed]
  11. L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035(70350A), 1–12 (2008). [CrossRef]
  12. C. Hellriegel, E. Gratton, “Real-time multi-parameter spectroscopy and localization in three-dimensional single-particle tracking,” J. R. Soc. Interface 6(Suppl 1), S3–S14 (2009). [CrossRef] [PubMed]
  13. N. P. Wells, G. A. Lessard, P. M. Goodwin, M. E. Phipps, P. J. Cutler, D. S. Lidke, B. S. Wilson, J. H. Werner, “Time-resolved three-dimensional molecular tracking in live cells,” Nano Lett. 10(11), 4732–4737 (2010). [CrossRef] [PubMed]
  14. G. A. Lessard, P. M. Goodwin, J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(224106), 1–3 (2007), doi:. [CrossRef]
  15. N. P. Wells, G. A. Lessard, J. H. Werner, “Confocal, three-dimensional tracking of individual quantum dots in high-background environments,” Anal. Chem. 80(24), 9830–9834 (2008). [CrossRef] [PubMed]
  16. H. Cang, C. S. Xu, D. Montiel, H. Yang, “Guiding a confocal microscope by single fluorescent nanoparticles,” Opt. Lett. 32(18), 2729–2731 (2007). [CrossRef] [PubMed]
  17. K. McHale, A. J. Berglund, H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7(11), 3535–3539 (2007). [CrossRef] [PubMed]
  18. V. Levi, Q. Ruan, K. Kis-Petikova, E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31(5), 997–1000 (2003). [CrossRef] [PubMed]
  19. V. Levi, Q. Q. Ruan, E. Gratton, “3-D particle tracking in a two-photon microscope: Application to the study of molecular dynamics in cells,” Biophys. J. 88(4), 2919–2928 (2005). [CrossRef] [PubMed]
  20. Y. Katayama, O. Burkacky, M. Meyer, C. Bräuchle, E. Gratton, D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” ChemPhysChem 10(14), 2458–2464 (2009). [CrossRef] [PubMed]
  21. M. F. Juette, F. E. Rivera-Molina, D. K. Toomre, J. Bewersdorf, “Adaptive optics enables three-dimensional single particle tracking at the sub-millisecond scale,” Appl. Phys. Lett. 102(173702), 1–4 (2013), doi:. [CrossRef]
  22. N. F. Reuel, A. Dupont, O. Thouvenin, D. C. Lamb, M. S. Strano, “Three-dimensional tracking of carbon nanotubes within living cells,” ACS Nano 6(6), 5420–5428 (2012). [CrossRef] [PubMed]
  23. L. M. Davis, B. K. Canfield, J. A. Germann, J. K. King, W. N. Robinson, A. D. Dukes, S. J. Rosenthal, P. C. Samson, J. P. Wikswo, “Four-focus single-particle position determination in a confocal microscope,” Proc. SPIE 7571(757112), 1–10 (2010).
  24. W. E. Moerner, D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003). [CrossRef]
  25. J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77(3), 783–836 (2005). [CrossRef]
  26. D. A. Ball, G. Q. Shen, L. M. Davis, “Single-molecule detection with axial flow into a micrometer-sized capillary,” Appl. Opt. 46(7), 1157–1164 (2007). [CrossRef] [PubMed]
  27. L. M. Davis, G. Q. Shen, “Accounting for triplet and saturation effects in FCS measurements,” Curr. Pharm. Biotechnol. 7(4), 287–301 (2006). [CrossRef] [PubMed]
  28. http://microscope.olympus-global.com/uis2/en/uplsapo60xw/
  29. N. S. Cheng, “Formula for the viscosity of a glycerol-water mixture,” Ind. Eng. Chem. Res. 47(9), 3285–3288 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited