OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation

Hyeon-Cheol Park, Yeong-Hyeon Seo, and Ki-Hun Jeong  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5818-5825 (2014)
http://dx.doi.org/10.1364/OE.22.005818


View Full Text Article

Enhanced HTML    Acrobat PDF (1828 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a fully packaged and compact forward viewing endomicroscope by using a resonant fiber scanner with two dimensional Lissajous trajectories. The fiber scanner comprises a single mode fiber with additional microstructures mounted inside a piezoelectric tube with quartered electrodes. The mechanical cross-coupling between the transverse axes of a resonant fiber with a circular cross-section was completely eliminated by asymmetrically modulating the stiffness of the fiber cantilever with silicon microstructures and an off-set fiber fragment. The Lissajous fiber scanner was fully packaged as endomicroscopic catheter passing through the accessory channel of a clinical endoscope and combined with spectral domain optical coherence tomography (SD-OCT). Ex-vivo 3D OCT images were successfully reconstructed along Lissajous trajectory. The preview imaging capability of the Lissajous scanning enables rapid 3D imaging with high temporal resolution. This endoscopic catheter provides many opportunities for on-demand and non-invasive optical biopsy inside a gastrointestinal endoscope.

© 2014 Optical Society of America

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Microscopy

History
Original Manuscript: January 15, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 24, 2014
Published: March 5, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Hyeon-Cheol Park, Yeong-Hyeon Seo, and Ki-Hun Jeong, "Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation," Opt. Express 22, 5818-5825 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-5818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Provenzale, J. Onken, “Surveillance issues in inflammatory bowel disease: ulcerative colitis,” J. Clin. Gastroenterol. 32(2), 99–105 (2001). [CrossRef] [PubMed]
  2. B. J. Reid, P. L. Blount, Z. Feng, D. S. Levine, “Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia,” Am. J. Gastroenterol. 95(11), 3089–3096 (2000). [CrossRef] [PubMed]
  3. D. S. Levine, R. C. Haggitt, P. L. Blount, P. S. Rabinovitch, V. W. Rusch, B. J. Reid, “An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus,” Gastroenterology 105(1), 40–50 (1993). [PubMed]
  4. B. J. Reid, W. M. Weinstein, K. J. Lewin, R. C. Haggitt, G. VanDeventer, L. DenBesten, C. E. Rubin, “Endoscopic biopsy can detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly recognizable neoplastic lesions,” Gastroenterology 94(1), 81–90 (1988). [PubMed]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum Press, 1995).
  6. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  8. T. D. Wang, J. Van Dam, “Optical biopsy: A new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004). [CrossRef] [PubMed]
  9. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror,” Opt. Lett. 31(13), 2018–2020 (2006). [CrossRef] [PubMed]
  10. W. Jung, D. T. McCormick, Y.-C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett. 32(22), 3239–3241 (2007). [CrossRef] [PubMed]
  11. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, M. C. Wu, “Two-axis MEMS Scanning Catheter for Ultrahigh Resolution Three-dimensional and En Face Imaging,” Opt. Express 15(5), 2445–2453 (2007). [CrossRef] [PubMed]
  12. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007). [CrossRef] [PubMed]
  13. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett. 33(12), 1324–1326 (2008). [CrossRef] [PubMed]
  14. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013). [CrossRef] [PubMed]
  15. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007). [CrossRef]
  16. P. H. Tran, D. S. Mukai, M. Brenner, Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004). [CrossRef] [PubMed]
  17. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012). [CrossRef] [PubMed]
  18. T. Xie, H. Xie, G. K. Fedder, Y. Pan, “Endoscopic Optical Coherence Tomography with a Modified Microelectromechanical Systems Mirror for Detection of Bladder Cancers,” Appl. Opt. 42(31), 6422–6426 (2003). [CrossRef] [PubMed]
  19. W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt. 17(2), 021102 (2012). [CrossRef] [PubMed]
  20. H.-C. Park, C. Song, M. Kang, Y. Jeong, K.-H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett. 37(13), 2673–2675 (2012). [CrossRef] [PubMed]
  21. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006). [CrossRef] [PubMed]
  22. F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A Miniature Head-Mounted Two-Photon Microscope. High-Resolution Brain Imaging in Freely Moving Animals,” Neuron 31(6), 903–912 (2001). [CrossRef] [PubMed]
  23. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  24. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  25. T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang, “Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography,” Opt. Express 17(16), 13819–13829 (2009). [CrossRef] [PubMed]
  26. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  27. E. J. Seibel, R. S. Johnston, and C. D. Melville, “A full-color scanning fiber endoscope,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VI(San Jose, CA, 2006), pp. 608303–608308.
  28. M. T. Myaing, D. J. MacDonald, X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  29. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  30. L. Huo, J. Xi, Y. Wu, X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010). [CrossRef] [PubMed]
  31. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012). [CrossRef] [PubMed]
  32. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012). [CrossRef] [PubMed]
  33. S. Moon, S.-W. Lee, M. Rubinstein, B. J. F. Wong, Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18(20), 21183–21197 (2010). [CrossRef] [PubMed]
  34. W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012). [CrossRef] [PubMed]
  35. O. M. El Rifai, K. Youcef-Toumi, “Coupling in piezoelectric tube scanners used in scanning probe microscopes,” in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148) (IEEE, 2001), 5, 3251–3255. [CrossRef]
  36. C. L. Hoy, N. J. Durr, A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50(16), 2376–2382 (2011). [CrossRef] [PubMed]
  37. J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010). [CrossRef] [PubMed]
  38. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012). [CrossRef] [PubMed]
  39. H.-C. Park, C. Song, K.-H. Jeong, “Micromachined lens microstages for two-dimensional forward optical scanning,” Opt. Express 18(15), 16133–16138 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited