OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Axial scanning in confocal microscopy employing adaptive lenses (CAL)

Nektarios Koukourakis, Markus Finkeldey, Moritz Stürmer, Christoph Leithold, Nils C. Gerhardt, Martin R. Hofmann, Ulrike Wallrabe, Jürgen W. Czarske, and Andreas Fischer  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 6025-6039 (2014)
http://dx.doi.org/10.1364/OE.22.006025


View Full Text Article

Enhanced HTML    Acrobat PDF (3260 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we analyze the capability of adaptive lenses to replace mechanical axial scanning in confocal microscopy. The adaptive approach promises to achieve high scan rates in a rather simple implementation. This may open up new applications in biomedical imaging or surface analysis in micro- and nanoelectronics, where currently the axial scan rates and the flexibility at the scan process are the limiting factors. The results show that fast and adaptive axial scanning is possible using electrically tunable lenses but the performance degrades during the scan. This is due to defocus and spherical aberrations introduced to the system by tuning of the adaptive lens. These detune the observation plane away from the best focus which strongly deteriorates the axial resolution by a factor of ~2.4. Introducing balancing aberrations allows addressing these influences. The presented approach is based on the employment of a second adaptive lens, located in the detection path. It enables shifting the observation plane back to the best focus position and thus creating axial scans with homogeneous axial resolution. We present simulated and experimental proof-of-principle results.

© 2014 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Microscopy

History
Original Manuscript: January 23, 2014
Revised Manuscript: February 27, 2014
Manuscript Accepted: February 27, 2014
Published: March 6, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Nektarios Koukourakis, Markus Finkeldey, Moritz Stürmer, Christoph Leithold, Nils C. Gerhardt, Martin R. Hofmann, Ulrike Wallrabe, Jürgen W. Czarske, and Andreas Fischer, "Axial scanning in confocal microscopy employing adaptive lenses (CAL)," Opt. Express 22, 6025-6039 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-6025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988). [CrossRef]
  2. C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978). [PubMed]
  3. J. G. White, W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987). [CrossRef]
  4. J. G. White, W. B. Amos, M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), 41–48 (1987). [CrossRef] [PubMed]
  5. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996). [CrossRef]
  6. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, O. G. Schmidt, “„Triggered polarization entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9(9), 315 (2007). [CrossRef]
  7. D. A. Lange, H. M. Jennings, S. P. Shah, “Analysis of surface roughness using confocal microscopy,” J. Mater. Sci. 28(14), 3879–3884 (1993). [CrossRef]
  8. G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy: I. Principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000). [CrossRef]
  9. J. Benschop, G. van Rosmalen, “Confocal compact scanning optical microscope based on compact disc technology,” Appl. Opt. 30(10), 1179–1184 (1991). [CrossRef] [PubMed]
  10. A. E. Dixon, S. Damaskinos, M. R. Atkinson, “Transmission and double-reflection scanning stage confocal microscope,” Scanning 13(4), 299–306 (1991). [CrossRef]
  11. B. S. Chun, K. Kim, D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80(7), 073706 (2009). [CrossRef] [PubMed]
  12. M. Rajadhyaksha, R. R. Anderson, R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38(10), 2105–2115 (1999). [CrossRef] [PubMed]
  13. M. Petran, M. Hadravsky, M. D. A. V. I. D. Egger, R. O. B. E. R. T. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58(5), 661–664 (1968). [CrossRef]
  14. L.-C. Chen, H.-W. Li, and Y.-W. Chang, ”Full-field chromatic confocal surface profilometry employing DMD correspondence for minimizing lateral cross talks,” Proc. Of SPIE Vol. 832120, Symp. on Precision Eng. (2011). [CrossRef]
  15. B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010). [CrossRef] [PubMed]
  16. W. Göbel, F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007). [CrossRef] [PubMed]
  17. W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett. 32(12), 1731–1733 (2007). [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, T. Yatagai, T. F. Wiesendanger, A. K. Ruprecht, H. J. Tiziani, “Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching,” Opt. Express 11(1), 54–60 (2003). [CrossRef] [PubMed]
  19. L. Büttner, C. Leithold, J. Czarske, “Interferometric velocity measurements through a fluctuating Gas-Liquid interface employing Adaptive Optics,” Opt. Express 21(25), 30653–30663 (2013). [CrossRef] [PubMed]
  20. H. Oku, K. Hashimoto, M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004). [CrossRef] [PubMed]
  21. B. H. W. Hendricks, S. Kuiper, M. A. J. Van As, C. A. Renders, T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005). [CrossRef]
  22. B. Berge, J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  23. S. Liu, H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011). [CrossRef] [PubMed]
  24. K. S. Lee, P. Vanderwall, J. P. Rolland, “Two-photon microscopy with dynamic focusing objective using a liquid lens,” Proc. SPIE 7569, 756923 (2010). [CrossRef]
  25. S. Murali, K. P. Thompson, J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009). [CrossRef] [PubMed]
  26. S. Murali, P. Meemon, K.-S. Lee, W. P. Kuhn, K. P. Thompson, J. P. Rolland, “Assessment of a liquid lens enabled in vivo optical coherence microscope,” Appl. Opt. 49(16), D145–D156 (2010). [CrossRef] [PubMed]
  27. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013). [CrossRef] [PubMed]
  28. L. J. Allen, M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  29. J. König, K. Tschulik, L. Büttner, M. Uhlemann, J. Czarske, “Analysis of the Electrolyte Convection inside the concentration boundary layer during structured electrodeposition of Copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013). [CrossRef] [PubMed]
  30. P. Günther, R. Kuschmierz, T. Pfister, J. Czarske, “Distance measurement technique using tilted interference fringe systems and receiving optic matching,” Opt. Lett. 37(22), 4702–4704 (2012). [CrossRef] [PubMed]
  31. L. Yang, A. Mac Raighne, E. M. McCabe, L. A. Dunbar, T. Scharf, “Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle,” Appl. Opt. 44(28), 5928–5936 (2005). [CrossRef] [PubMed]
  32. A. Mermillod-Blondin, E. McLeod, C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008). [CrossRef] [PubMed]
  33. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014). [CrossRef] [PubMed]
  34. M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  35. O. Albert, L. Sherman, G. Mourou, T. B. Norris, G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000). [CrossRef] [PubMed]
  36. B. Wang, M. Ye, S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” Photonics Technol. Lett. IEEE 18(1), 79–81 (2006). [CrossRef]
  37. J. Draheim, T. Burger, and R. Kamberger, “Closed-loop pressure control of an adaptive single chamber membrane lens with integrated actuation,” in International Conference on Optical MEMS and Nanophotonics, 47–48 (2011). [CrossRef]
  38. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009). [CrossRef] [PubMed]
  39. J. N. Lee, C. Park, G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003). [CrossRef] [PubMed]
  40. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1(1), 13–15 (1977). [CrossRef] [PubMed]
  41. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244(2), 113–121 (2011). [CrossRef] [PubMed]
  42. C. J. R. Sheppard, M. Gu, K. Brain, H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33(4), 616–624 (1994). [CrossRef] [PubMed]
  43. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd-Edition (Springer Science + Business Media, 2006).
  44. R. R. Shannon and J. C. Wyant, Applied Optics and Optical Engineering (Academic Press Inc., 1992), Chapter 1.
  45. V. N. Mahajan, “Strehl ratio of a Gaussian beam,” J. Opt. Soc. Am. A 22(9), 1824–1833 (2005). [CrossRef] [PubMed]
  46. G. Martial, “Strehl ratio and aberration balancing,” J. Opt. Soc. Am. A 8(1), 164–170 (1991). [CrossRef]
  47. C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563–3568 (1991). [CrossRef] [PubMed]
  48. C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length of confocal imaging properties,” Optik (Stuttg.) 87, 34–38 (1991).
  49. G. J. Tearney, R. H. Webb, B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998). [CrossRef] [PubMed]
  50. D. K. Kang, H. Yoo, P. Jillella, B. E. Bouma, G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2(6), 1412–1422 (2011). [CrossRef] [PubMed]
  51. M. Martínez-Corral, M. Kowalczyk, C. J. Zapata-Rodríguez, P. Andrés, “Tunable optical sectioning in confocal microscopy by use of symmetrical defocusing and apodization,” Appl. Opt. 37(29), 6914–6921 (1998). [CrossRef] [PubMed]
  52. C. J. R. Sheppard, D. K. Hamilton, “Edge enhancement by defocusing of confocal images,” Opt. Acta (Lond.) 31(6), 723–727 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited