OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Dependent scattering in Intralipid® phantoms in the 600-1850 nm range

Ben Aernouts, Robbe Van Beers, Rodrigo Watté, Jeroen Lammertyn, and Wouter Saeys  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 6086-6098 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of dependent scattering on the bulk scattering properties of intralipid phantoms in the 600-1850 nm wavelength range has been investigated. A set of 57 liquid optical phantoms, covering a wide range of intralipid concentrations (1-100% v/v), was prepared and the bulk optical properties were accurately determined. The bulk scattering coefficient as a function of the particle density could be well described with Twersky’s packing factor (R2 > 0.990). A general model was elaborated taking into account the wavelength dependency and the effect of the concentration of scattering particles (R2 = 0.999). Additionally, an empirical approach was followed to characterize the effect of dense packing of scattering particles on the anisotropy factor (R2 = 0.992) and the reduced scattering coefficient (R2 = 0.999) of the phantoms. The derived equations can be consulted in future research for the calculation of the bulk scattering properties of intralipid dilutions in the 600-1850 nm range, or for the validation of theories that describe the effects of dependent scattering on the scattering properties of intralipid-like systems.

© 2014 Optical Society of America

OCIS Codes
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:

Original Manuscript: January 31, 2014
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 21, 2014
Published: March 6, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Ben Aernouts, Robbe Van Beers, Rodrigo Watté, Jeroen Lammertyn, and Wouter Saeys, "Dependent scattering in Intralipid® phantoms in the 600-1850 nm range," Opt. Express 22, 6086-6098 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), p. 840.
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory, 1st ed. (Academic Press, 1978), p. 250.
  3. B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  4. B. Cletus, R. Künnemeyer, P. Martinsen, V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 15(1), 017003 (2010). [CrossRef] [PubMed]
  5. P. D. Ninni, F. Martelli, G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21–N28 (2011). [CrossRef] [PubMed]
  6. P. Di Ninni, F. Martelli, G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011). [CrossRef] [PubMed]
  7. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef] [PubMed]
  8. R. Michels, F. Foschum, A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  9. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  10. X. Wen, V. V. Tuchin, Q. Luo, D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol. 54(22), 6917–6930 (2009). [CrossRef] [PubMed]
  11. G. Zaccanti, S. Del Bianco, F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  12. B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013). [CrossRef] [PubMed]
  13. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc. 67(8), 993–996 (2013). [CrossRef] [PubMed]
  14. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42(21), 4375–4380 (2003). [CrossRef] [PubMed]
  15. G. Göbel, J. Kuhn, J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Media 5(4), 413–426 (1995). [CrossRef]
  16. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, 3rd ed. (Cambridge University, 2006).
  17. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15(6), 2822–2836 (2007). [CrossRef] [PubMed]
  18. D. W. Mackowski, M. I. Mishchenko, “Direct simulation of extinction in a slab of spherical particles,” J. Quantum Spectrosc. Radiat. Transfer 123, 103–112 (2013). [CrossRef]
  19. M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85(4), 621–629 (1952). [CrossRef]
  20. V. P. Dick, “Applicability limits of Beer’s law for dispersion media with a high concentration of particles,” Appl. Opt. 37(21), 4998–5004 (1998). [CrossRef] [PubMed]
  21. D. W. Mackowski, M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996). [CrossRef]
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 2: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing, 1st ed. (Academic, 1978), p. 319.
  23. M. I. Mishchenko, “Directional radiometry and radiative transfer: A new paradigm,” J. Quantum Spectrosc. Radiat. Transfer 112(13), 2079–2094 (2011). [CrossRef]
  24. M. I. Mishchenko, D. H. Goldstein, J. Chowdhary, A. Lompado, “Radiative transfer theory verified by controlled laboratory experiments,” Opt. Lett. 38(18), 3522–3525 (2013). [CrossRef] [PubMed]
  25. R. West, D. Gibbs, L. Tsang, K. Fung, “Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media,” J. Opt. Soc. Am. A 11(6), 1854–1858 (1994). [CrossRef]
  26. L. Tsang, J. Kong, T. Habashy, “Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus–Yevick approximation,” J. Acoust. Soc. Am. 71(3), 552–558 (1982). [CrossRef]
  27. A. Ishimaru, Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72(10), 1317–1320 (1982). [CrossRef]
  28. V. Twersky, “Low-frequency scattering by correlated distributions of randomly oriented particles,” J. Acoust. Soc. Am. 81(5), 1609–1618 (1987). [CrossRef]
  29. V. Twersky, “Acoustic bulk parameters in distributions of pair-correlated scatterers,” J. Acoust. Soc. Am. 64(6), 1710–1719 (1978). [CrossRef]
  30. P. A. Bascom, R. S. Cobbold, “On a fractal packing approach for understanding ultrasonic backscattering from blood,” J. Acoust. Soc. Am. 98(6), 3040–3049 (1995). [CrossRef] [PubMed]
  31. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998). [CrossRef] [PubMed]
  32. N. E. Berger, R. J. Lucas, V. Twersky, “Polydisperse scattering theory and comparisons with data for red blood cells,” J. Acoust. Soc. Am. 89(3), 1394–1401 (1991). [CrossRef] [PubMed]
  33. V. Twersky, “Low-frequency scattering by mixtures of correlated nonspherical particles,” J. Acoust. Soc. Am. 84(1), 409–415 (1988). [CrossRef]
  34. A. Bashkatov, E. Genina, V. I. Kochubey, V. Tuchin, “Effects of scattering particles concentration on light propagation through turbid media,” Proc. SPIE 3917, 256–263 (2000). [CrossRef]
  35. M. Mishchenko, “Asymmetry parameters of the phase function for densely packed scattering grains,” J. Quantum Spectrosc. Radiat. Transfer 52(1), 95–110 (1994). [CrossRef]
  36. S. N. Thennadil, H. Martens, A. Kohler, “Physics-based multiplicative scatter correction approaches for improving the performance of calibration models,” Appl. Spectrosc. 60(3), 315–321 (2006). [CrossRef] [PubMed]
  37. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013). [CrossRef]
  38. R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. M. Nicolaï, W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013). [CrossRef] [PubMed]
  39. S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .
  40. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  41. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley, 1957), p. 470.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited