OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

5D-Tracking of a nanorod in a focused laser beam - a theoretical concept

Markus Grießhammer and Alexander Rohrbach  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 6114-6132 (2014)
http://dx.doi.org/10.1364/OE.22.006114


View Full Text Article

Enhanced HTML    Acrobat PDF (2346 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Back-focal plane (BFP) interferometry is a very fast and precise method to track the 3D position of a sphere within a focused laser beam using a simple quadrant photo diode (QPD). Here we present a concept of how to track and recover the 5D state of a cylindrical nanorod (3D position and 2 tilt angles) in a laser focus by analyzing the interference of unscattered light and light scattered at the cylinder. The analytical theoretical approach is based on Rayleigh-Gans scattering together with a local field approximation for an infinitely thin cylinder. The approximated BFP intensities compare well with those from a more rigorous numerical approach. It turns out that a displacement of the cylinder results in a modulation of the BFP intensity pattern, whereas a tilt of the cylinder results in a shift of this pattern. We therefore propose the concept of a local QPD in the BFP of a detection lens, where the QPD center is shifted by the angular coordinates of the cylinder tilt.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.7010) Lasers and laser optics : Laser trapping
(260.3160) Physical optics : Interference
(290.0290) Scattering : Scattering

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 27, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 7, 2014
Published: March 7, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Markus Grießhammer and Alexander Rohrbach, "5D-Tracking of a nanorod in a focused laser beam - a theoretical concept," Opt. Express 22, 6114-6132 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-6114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Bartko, R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103(51), 11237–11241 (1999). [CrossRef]
  2. K. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010). [CrossRef] [PubMed]
  3. S. Stallinga, B. Rieger, “Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model,” Opt. Express 20(6), 5896–5921 (2012). [CrossRef] [PubMed]
  4. M. Böhmer, J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20(3), 554–559 (2003). [CrossRef]
  5. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006). [CrossRef] [PubMed]
  6. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998). [CrossRef]
  7. E. L. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd alpha YAG laser,” Appl. Phys. Lett. 69(4), 446–448 (1996). [CrossRef]
  8. P. C. Seitz, E. H. K. Stelzer, A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method,” Appl. Opt. 45(28), 7309–7315 (2006). [CrossRef] [PubMed]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  10. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology 22(28), 285503 (2011). [CrossRef] [PubMed]
  11. A. A. M. Bui, A. B. Stilgoe, T. A. Nieminen, H. Rubinsztein-Dunlop, “Calibration of nonspherical particles in optical tweezers using only position measurement,” Opt. Lett. 38(8), 1244–1246 (2013). [CrossRef] [PubMed]
  12. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007). [CrossRef] [PubMed]
  13. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  14. M. Speidel, L. Friedrich, A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17(2), 1003–1015 (2009). [CrossRef] [PubMed]
  15. D. Ruh, B. Tränkle, A. Rohrbach, “Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction,” Opt. Express 19(22), 21627–21642 (2011). [CrossRef] [PubMed]
  16. K. Dholakia, T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]
  17. S. H. Simpson, S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24(2), 430–443 (2007). [CrossRef] [PubMed]
  18. F. Borghese, P. Denti, R. Saija, M. A. Iati, O. M. Marago, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100, 163903 (2008).
  19. P. B. Bareil, Y. Sheng, “Angular and position stability of a nanorod trapped in an optical tweezers,” Opt. Express 18(25), 26388–26398 (2010). [CrossRef] [PubMed]
  20. S. H. Simpson, S. Hanna, “First-order nonconservative motion of optically trapped nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3), 031141 (2010). [CrossRef] [PubMed]
  21. Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012). [CrossRef] [PubMed]
  22. A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011). [CrossRef] [PubMed]
  23. P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett. 11(6), 2375–2381 (2011). [CrossRef] [PubMed]
  24. O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008). [CrossRef] [PubMed]
  25. L. Dixon, F. C. Cheong, D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19(17), 16410–16417 (2011). [CrossRef] [PubMed]
  26. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999). [CrossRef] [PubMed]
  27. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004). [CrossRef]
  28. G. Volpe, G. Kozyreff, D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys. 102(8), 084701 (2007). [CrossRef]
  29. R. Huang, I. Chavez, K. M. Taute, B. Lukic, S. Jeney, M. G. Raizen, E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nat. Phys. 7(7), 576–580 (2011). [CrossRef]
  30. L. Friedrich, A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett. 35(11), 1920–1922 (2010). [CrossRef] [PubMed]
  31. H. Kress, E. H. K. Stelzer, A. Rohrbach, “Tilt angle dependent three-dimensional-position detection of a trapped cylindrical particle in a focused laser beam,” Appl. Phys. Lett. 84(21), 4271–4273 (2004). [CrossRef]
  32. L. Friedrich, A. Rohrbach, “Tuning the detection sensitivity: a model for axial backfocal plane interferometric tracking,” Opt. Lett. 37(11), 2109–2111 (2012). [CrossRef] [PubMed]
  33. A. Rohrbach, E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18(4), 839–853 (2001). [CrossRef] [PubMed]
  34. M. M. Tirado, C. L. Martinez, J. G. Delatorre, “Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Applications to short DNA fragments,” J. Chem. Phys. 81(4), 2047–2052 (1984). [CrossRef]
  35. A. Rohrbach, H. Kress, E. H. K. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003). [CrossRef] [PubMed]
  36. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). [CrossRef] [PubMed]
  37. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited