OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Optical correlation algorithm for reconstructing phase skeleton of complex optical fields for solving the phase problem

O. V. Angelsky, M. P. Gorsky, S. G. Hanson, V. P. Lukin, I. I. Mokhun, P. V. Polyanskii, and P. A. Ryabiy  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 6186-6193 (2014)
http://dx.doi.org/10.1364/OE.22.006186


View Full Text Article

Acrobat PDF (2066 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optical correlation algorithm illustrating a new general method for reconstructing the phase skeleton of complex optical fields from the measured two-dimensional intensity distribution. The core of the algorithm consists in locating the saddle points of the intensity distribution and connecting such points into nets by the lines of intensity gradient that are closely associated with the equi-phase lines of the field. This algorithm provides a new partial solution to the inverse problem in optics commonly referred to as the phase problem.

© 2014 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5430) Physical optics : Polarization
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

History
Original Manuscript: January 20, 2014
Revised Manuscript: February 22, 2014
Manuscript Accepted: February 24, 2014
Published: March 7, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
O. V. Angelsky, M. P. Gorsky, S. G. Hanson, V. P. Lukin, I. I. Mokhun, P. V. Polyanskii, and P. A. Ryabiy, "Optical correlation algorithm for reconstructing phase skeleton of complex optical fields for solving the phase problem," Opt. Express 22, 6186-6193 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-5-6186


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. T. Bates and M. J. McDonnell, Image Restoration and Reconstruction (Caledon Oxford, 1986).
  2. T. Acharya and A. K. Ray, Image Processing – Principles and Applications (Wiley InterScience, 2006).
  3. E. Abramochkin, V. Volostnikov, “Two-dimensional phase problem: differential approach,” Opt. Commun. 74(3–4), 139–143 (1989). [CrossRef]
  4. E. Abramochkin, V. Volostnikov, “Relationship between two-dimensional intensity and phase in a Fresnel diffraction zone,” Opt. Commun. 74(3–4), 144–148 (1989). [CrossRef]
  5. V. Volostnikov, “Phase problem in optics,” J. Sov. Laser Research 11(6), 601–626 (1990). [CrossRef]
  6. M. Loktev, V. Volostnikov, “Singular wavefields and phase retrieval problem,” Proc. SPIE 3487, 141–147 (1998). [CrossRef]
  7. K. G. Larkin, D. J. Bone, M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001). [CrossRef] [PubMed]
  8. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transforms,” J. Opt. Soc. Am. A 18(8), 1871–1881 (2001). [CrossRef]
  9. F. Yu. Kanev, V. P. Lukin, L. N. Lavrinova, “Correction of turbulent distortions based on the phase conjugation in the presence of phase dislocations in a reference beam,” Atmos. Oceanic Opt. 14, 1132–1169 (2001).
  10. V. P. Lukin, B. V. Fortes, “Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong intensity fluctuations,” Appl. Opt. 41(27), 5616–5624 (2002). [CrossRef] [PubMed]
  11. V. A. Tartakovsky, V. A. Sennikov, P. A. Konyaev, V. P. Lukin, “Wave reversal under strong scintillation conditions and sequential phasing in adaptive optics,” Atmos. Oceanic Opt. 15, 1104–1113 (2002).
  12. J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14(2), 498–508 (2006). [CrossRef] [PubMed]
  13. M. Wielgus, K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50(28), 5513–5523 (2011). [CrossRef] [PubMed]
  14. M. Trusiak, K. Patorski, M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20(21), 23463–23479 (2012). [CrossRef] [PubMed]
  15. D. Barchiesi, “Numerical retrieval of thin aluminium layer properties from SPR experimental data,” Opt. Express 20(8), 9064–9078 (2012). [CrossRef] [PubMed]
  16. J. R. Fienup, “Phase retrieval algorithms: a personal tour [Invited],” Appl. Opt. 52(1), 45–56 (2013). [CrossRef] [PubMed]
  17. M. S. Soskin, M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
  18. I. Mokhun, “Introduction to linear singular optics,” in Optical Correlation Techniques and Applications, Ed. O. V. Angelsky, (2007), Chap. 1, TA 1630.A6, 1–133.
  19. N. B. Baranova, A. V. Mamaev, H. F. Pilipetsky, V. V. Shkunov, B. Y. Zel’dovich, “Wavefront dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73(5), 525–528 (1983). [CrossRef]
  20. N. Freund, Shvartsman, V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101(3–4), 247–264 (1993). [CrossRef]
  21. Y. Galushko, I. Mokhun, “Characteristics of scalar random field and its vortex networks. Recovery of the optical phase,” J. Opt. A: Pure Appl. Opt. 11094017 (2009).
  22. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Signal Processing Acoust. Speech Signal Processing 29(6), 1153–1160 (1981). [CrossRef]
  23. V. I. Vasil’ev, M. S. Soskin, “Analysis of dynamics of topological peculiarities of varying random vector fields,” Ukr. J. Phys. 52, 1123–1129 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited