OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers

Weihong Long, Weiwen Zou, Xing Li, Wenning Jiang, Xinwan Li, and Jianping Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6249-6256 (2014)
http://dx.doi.org/10.1364/OE.22.006249


View Full Text Article

Enhanced HTML    Acrobat PDF (2721 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate the novel phenomena of photoluminescence (PL) and fluorescence resonance energy transfer (FRET) assisted three-color PL separating in DNA optical nanofibers consisting of the stretched and connected DNA-cetyltrimethyl ammonium wires. The PL experiments are performed to comparatively trace photon transmission between single dye-doped DNA-CTMA optical nanofiber and PMMA optical nanofiber. A cascade FRET including DNA minor groove binder and DNA intercalators is used to further trace photon transmission inside DNA-CTMA wire. These experimental results will help to intrigue the new applications of DNA-CTMA as molecular waveguide in optobioelectronics area.

© 2014 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(230.7370) Optical devices : Waveguides
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Materials

History
Original Manuscript: November 18, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 11, 2014
Published: March 10, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Weihong Long, Weiwen Zou, Xing Li, Wenning Jiang, Xinwan Li, and Jianping Chen, "Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers," Opt. Express 22, 6249-6256 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-6249


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bath, A. J. Turberfield, “DNA nanomachines,” Nat. Nanotechnol. 2(5), 275–284 (2007). [CrossRef] [PubMed]
  2. A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, “Challenges and opportunities for structural DNA nanotechnology,” Nat. Nanotechnol. 6(12), 763–772 (2011). [CrossRef] [PubMed]
  3. W. Su, V. Bonnard, G. A. Burley, “DNA-templated photonic arrays and assemblies: design principles and future opportunities,” Chemistry 17(29), 7982–7991 (2011). [CrossRef] [PubMed]
  4. M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N. F. Van Hulst, M. Sauer, “Multistep energy transfer in single molecular photonic wires,” J. Am. Chem. Soc. 126(21), 6514–6515 (2004). [CrossRef] [PubMed]
  5. J. K. Hannestad, P. Sandin, B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc. 130(47), 15889–15895 (2008). [CrossRef] [PubMed]
  6. K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132(51), 18177–18190 (2010). [CrossRef] [PubMed]
  7. W. Su, M. Schuster, C. R. Bagshaw, U. Rant, G. A. Burley, “Site-specific assembly of DNA-based photonic wires by using programmable polyamides,” Angew. Chem. Int. Ed. Engl. 50(12), 2712–2715 (2011). [CrossRef] [PubMed]
  8. W. Su, C. R. Bagshaw, G. A. Burley, “Addressable and unidirectional energy transfer along a DNA three-way junction programmed by pyrrole-imidazole polyamides,” Sci Rep 3, 1883 (2013). [CrossRef] [PubMed]
  9. A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007). [CrossRef]
  10. D. Madhwal, I. Singh, J. Kumar, C. S. Bhatia, P. K. Bhatnagar, P. C. Mathur, “Increasing the luminous efficiency of an MEH-PPV based PLED using salmon DNA and single walled carbon nanotube,” J. Lumin. 131(7), 1264–1266 (2011). [CrossRef]
  11. H. You, H. Spaeth, V. N. Linhard, A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009). [CrossRef] [PubMed]
  12. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  13. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010). [CrossRef]
  14. W. Long, W. Zou, X. Li, J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express 20(16), 18188–18193 (2012). [CrossRef] [PubMed]
  15. J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartmann, “Artificial DNA patterns by mechanical nanomanipulation,” Nano Lett. 2(1), 55–57 (2002). [CrossRef]
  16. A. Rajendran, M. Endo, H. Sugiyama, “Single-molecule analysis using DNA origami,” Angew. Chem. Int. Ed. Engl. 51(4), 874–890 (2012). [CrossRef] [PubMed]
  17. S. Kumar, G. Mishra, “Stretching single stranded DNA,” Soft Matter 7(10), 4595–4605 (2011). [CrossRef]
  18. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science 262(5136), 1025–1029 (1993). [CrossRef] [PubMed]
  19. J. A. Berashevich, T. Chakraborty, “Influence of solvent on the energetics of hole transfer in DNA,” J. Phys. Chem. B 111(47), 13465–13471 (2007). [CrossRef] [PubMed]
  20. C. Yang, D. Moses, A. J. Heeger, “Base-pair stacking in oriented films of DNA–surfactant complex,” Adv. Mater. 15(16), 1364–1367 (2003). [CrossRef]
  21. J. K. Hannestad, S. R. Gerrard, T. Brown, B. Albinsson, “Self-assembled DNA-based fluorescence waveguide with selectable output,” Small 7(22), 3178–3185 (2011). [CrossRef] [PubMed]
  22. A. S. Finch, C. M. Anton, C. M. Jacob, T. J. Proctor, D. N. Stratis-Cullum, “Assembly of DNA architectures in a non-aqueous solution,” Nanomaterials 2(4), 275–285 (2012). [CrossRef]
  23. S. O. Kelley, J. K. Barton, “Electron transfer between bases in double helical DNA,” Science 283(5400), 375–381 (1999). [CrossRef] [PubMed]
  24. T. Lin, I. Chen, Y. Hung, “Hole mobility characterization of DNA biopolymer by time-of-flight technique,” Appl. Phys. Lett. 101(15), 153701 (2012). [CrossRef]
  25. S. Uphoff, S. J. Holden, L. Le Reste, J. Periz, S. van de Linde, M. Heilemann, A. N. Kapanidis, “Monitoring multiple distances within a single molecule using switchable FRET,” Nat. Methods 7(10), 831–836 (2010). [CrossRef] [PubMed]
  26. S. S. Vogel, C. Thaler, S. V. Koushik, “Fanciful FRET,” Sci. STKE 331(re2), 1–8 (2006). [PubMed]
  27. Y. Ner, J. G. Grote, J. A. Stuart, G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl. 48(28), 5134–5138 (2009). [CrossRef] [PubMed]
  28. D. Navarathne, Y. Ner, J. G. Grote, G. A. Sotzing, “Three dye energy transfer cascade within DNA thin films,” Chem. Commun. (Camb.) 47(44), 12125–12127 (2011). [CrossRef] [PubMed]
  29. K. S. Sanju, P. P. Neelakandan, D. Ramaiah, “DNA-assisted white light emission through FRET,” Chem. Commun. (Camb.) 47(4), 1288–1290 (2011). [CrossRef] [PubMed]
  30. M. Ibisate, J. F. Galisteo-López, V. Esteso, C. López, “FRET-mediated amplified spontaneous emission in DNA–CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013). [CrossRef]
  31. P. D. Sahare, V. K. Sharma, D. Mohan, A. A. Rupasov, “Energy transfer studies in binary dye solution mixtures: acriflavine+rhodamine 6G and acriflavine+rhodamine B,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(4), 1257–1264 (2008). [CrossRef] [PubMed]
  32. N. Kitazawa, W. Aroonjaeng, M. Aono, Y. Watanabe, “Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films,” J. Lumin. 132(6), 1432–1436 (2012). [CrossRef]
  33. F. M. Ho, E. A. H. Hall, “A strand exchange FRET assay for DNA,” Biosens. Bioelectron. 20(5), 1001–1010 (2004). [CrossRef] [PubMed]
  34. G. S. Khan, A. Shah, Zia-ur-Rehman, D. Barker, “Chemistry of DNA minor groove binding agents,” J. Photochem. Photobiol. B 115, 105–118 (2012). [CrossRef] [PubMed]
  35. Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000). [CrossRef]
  36. Y. Guan, R. Shi, X. Li, M. Zhao, Y. Li, “Multiple binding modes for dicationic hoechst 33258 to DNA,” J. Phys. Chem. B 111(25), 7336–7344 (2007). [CrossRef] [PubMed]
  37. G. Duportail, Y. Mauss, J. Chambron, “Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA,” Biopolymers 16(7), 1397–1413 (1977). [CrossRef] [PubMed]
  38. K. A. Selanger, J. Falnes, T. Sikkeland, “Fluorescence lifetime studies of rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977). [CrossRef]
  39. Y. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011). [CrossRef]
  40. Y. Kwon, D. Choi, J. I. Jin, C. Lee, E. Koh, J. Grote, “Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA,” Sci. China Chem. 55(5), 814–821 (2012). [CrossRef]
  41. F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins,” Science 277(5326), 673–676 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited