OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Correction of optical absorption and scattering variations in laser speckle rheology measurements

Zeinab Hajjarian and Seemantini K. Nadkarni  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6349-6361 (2014)
http://dx.doi.org/10.1364/OE.22.006349


View Full Text Article

Enhanced HTML    Acrobat PDF (3474 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications.

© 2014 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(300.1030) Spectroscopy : Absorption

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 26, 2014
Published: March 11, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Zeinab Hajjarian and Seemantini K. Nadkarni, "Correction of optical absorption and scattering variations in laser speckle rheology measurements," Opt. Express 22, 6349-6361 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-6349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering: The Methods and Some Applications, W. Brown, ed. (Oxford University, 1993) (49).
  2. M. M. Robins, A. D. Watson, P. J. Wilde, “Emulsions-creaming and rheology,” Curr. Opin. Colloid Interface Sci. 7(5-6), 419–425 (2002). [CrossRef]
  3. M. Alexander, D. G. Dalgleish, “Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet,” Colloids Surf. B Biointerfaces 38(1-2), 83–90 (2004). [CrossRef] [PubMed]
  4. A. J. Breugem, F. Bouchama, G. J. M. Koper, “Diffusing wave spectroscopy: A novel rheological method for drying paint films,” Surf. Coat. Int. B 88(2), 135–138 (2005). [CrossRef]
  5. A. Brun, H. Dihang, L. Brunel, “Film formation of coatings studied by diffusing-wave spectroscopy,” Prog. Org. Coat. 61(2-4), 181–191 (2008). [CrossRef]
  6. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005). [CrossRef] [PubMed]
  7. S. K. Nadkarni, A. Bilenca, B. E. Bouma, G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006). [CrossRef] [PubMed]
  8. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008). [CrossRef] [PubMed]
  9. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011). [CrossRef] [PubMed]
  10. Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012). [CrossRef] [PubMed]
  11. Z. Hajjarian, S. K. Nadkarni, “Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids,” PLoS ONE 8(5), e65014 (2013). [CrossRef] [PubMed]
  12. L. Cipelletti, D. A. Weitz, “Ultralow angle dynamic light scattering with a charge coupled device camera based multispeckle multitau correlator,” Rev. Sci. Instrum. 70(8), 3214–3221 (1999). [CrossRef]
  13. D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
  14. T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995). [CrossRef] [PubMed]
  15. T. G. Mason, H. Gang, D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997). [CrossRef]
  16. T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000). [CrossRef]
  17. B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002). [CrossRef] [PubMed]
  18. B. R. Dasgupta, D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005). [CrossRef] [PubMed]
  19. M. Jonas, H. Huang, R. D. Kamm, P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008). [CrossRef] [PubMed]
  20. D. A. Boas, A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997). [CrossRef]
  21. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011). [CrossRef] [PubMed]
  22. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011). [CrossRef] [PubMed]
  23. L. V. Wang and H. Wu, Biomedical optics: principles and imaging (Wiley-Interscience, 2007).
  24. F. Cardinaux, L. Cipelletti, F. Scheffold, P. Schurtenberger, “Micreorheology of giant-micelle solutions,” Europhys. Lett. 57(5), 738–744 (2002). [CrossRef]
  25. S. Sakadzić, L. V. Wang, “Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse,” J. Opt. Soc. Am. A 24(9), 2797–2806 (2007). [CrossRef] [PubMed]
  26. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011). [CrossRef] [PubMed]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef] [PubMed]
  28. W. R. Calhoun, H. Maeta, S. Roy, L. M. Bali, S. Bali, “Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures,” J. Dairy Sci. 93(8), 3497–3504 (2010). [CrossRef] [PubMed]
  29. G. Latour, M. Elias, J.-M. Frigerio, “Determination of the Absorption and Scattering Coefficients of Pigments: Application to the Identification of the Components of Pigment Mixtures,” Appl. Spectrosc. 63(6), 604–610 (2009). [CrossRef] [PubMed]
  30. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(4), 3350–3358 (1995). [CrossRef] [PubMed]
  31. V. V. Tuchin, Handbook of optical biomedical diagnostics (SPIE Press, 2002).
  32. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  33. M. Giacomelli, Y. Zhu, J. Lee, A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010). [CrossRef] [PubMed]
  34. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997). [CrossRef] [PubMed]
  35. P. A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit:The role of ballistic transport and anisotropic scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4498–4515 (1998). [CrossRef]
  36. S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008). [CrossRef] [PubMed]
  37. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC Press, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited