OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Application of flat-top focus to 2D trapping of large particles

Hao Chen and K. C. Toussaint, Jr.  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6653-6660 (2014)
http://dx.doi.org/10.1364/OE.22.006653


View Full Text Article

Enhanced HTML    Acrobat PDF (1159 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 2D optical trapping ability of larger-than average-particles is compared for three different beam types: a flat-top, a Gaussian beam, and a donut shaped beam. Optical force-displacement curves are calculated in four different size regimes of particle diameters (1.5-20 μm). We find that the trapping efficiency increases linearly with ratio of particle diameter to wavelength for all three beams. As the ratio reaches a specific threshold value, the flat-top focus exhibits the largest trapping efficiency compared to the other two beam types. We experimentally demonstrate that flat-top focusing provides the largest transverse trapping efficiency for particles as large as 20 μm in diameter for our given experimental conditions. The overall trend in our experimental results follows that observed in our simulation model. The results from this study could facilitate light manipulation of large particles.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(260.5430) Physical optics : Polarization
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: December 11, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 20, 2014
Published: March 14, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Hao Chen and K. C. Toussaint, "Application of flat-top focus to 2D trapping of large particles," Opt. Express 22, 6653-6660 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-6653


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  5. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation Trapping Forces on Microspheres with Optical Tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993). [CrossRef]
  6. S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70(3), 685–706 (1998). [CrossRef]
  7. J. T. Finer, R. M. Simmons, J. A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368(6467), 113–119 (1994). [CrossRef] [PubMed]
  8. K. C. Neuman, A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008). [CrossRef] [PubMed]
  9. M. Werner, F. Merenda, J. Piguet, R. P. Salathé, H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011). [CrossRef] [PubMed]
  10. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12(1), 220–226 (2004). [CrossRef] [PubMed]
  11. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002). [CrossRef] [PubMed]
  12. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013). [CrossRef] [PubMed]
  13. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012). [CrossRef] [PubMed]
  14. M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37(16), 3381–3383 (2012). [CrossRef] [PubMed]
  15. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012). [CrossRef] [PubMed]
  16. M. Santarsiero, R. Borghi, “Correspondence between super-Gaussian and flattened Gaussian beams,” J. Opt. Soc. Am. A 16(1), 188–190 (1999). [CrossRef]
  17. H. Chen, S. Tripathi, K. C. Toussaint, “Demonstration of flat-top focusing under radial polarization illumination,” Opt. Lett. 39(4), 834–837 (2014). [CrossRef]
  18. C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6(10), 921–931 (2004). [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  20. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A 253, 358–379 (1959).
  21. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  22. K. Kitamura, K. Sakai, S. Noda, “Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam,” Opt. Express 19(15), 13750–13756 (2011). [CrossRef] [PubMed]
  23. B. Agate, C. Brown, W. Sibbett, K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004). [CrossRef] [PubMed]
  24. Q. W. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002). [CrossRef] [PubMed]
  25. M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,” Chem. Eng. Sci. 23(11), 1293–1298 (1968). [CrossRef]
  26. A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall—II Couette flow,” Chem. Eng. Sci. 22(4), 653–660 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited