OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles

Pin-Tso Lin, Tsan-Wen Lu, and Po-Tsung Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6791-6800 (2014)
http://dx.doi.org/10.1364/OE.22.006791


View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For manipulating nanometric particles, we propose a photonic crystal waveguide cavity design with a waist structure to enhance resonance characteristic of the cavity. For trapping a polystyrene particle of 50 nm radius on the lateral side of the waist, the optical force can reach 2308 pN/W with 24.7% signal transmission. Threshold power of only 0.32 mW is required for stable trapping. The total length of the device is relatively short with only ten photonic crystal periods, and the trapping can occur precisely and only at the waist. The designed cavity can also provide particle detection and surrounding medium sensing using the transmission spectrum with narrow linewidth. The simulated figure of merit of 110.6 is relatively high compared with those obtained from most plasmonic structures for sensing application. We anticipate this design with features of compact, efficient, and versatile in functionality will be beneficial for developing lab-on-chip in the future.

© 2014 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Photonic Crystals

History
Original Manuscript: December 20, 2013
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 11, 2014
Published: March 17, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Pin-Tso Lin, Tsan-Wen Lu, and Po-Tsung Lee, "Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles," Opt. Express 22, 6791-6800 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-6791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. R. Omori, T. Kobayashi, A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22(11), 816–818 (1997). [CrossRef] [PubMed]
  4. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994). [CrossRef] [PubMed]
  5. S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992). [CrossRef] [PubMed]
  6. K. Okamoto, S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999). [CrossRef]
  7. S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996). [CrossRef] [PubMed]
  8. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005). [CrossRef] [PubMed]
  9. B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  10. A. Rahmani, P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006). [CrossRef] [PubMed]
  11. M. Barth, O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006). [CrossRef]
  12. S. Lin, J. Hu, L. Kimerling, K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009). [CrossRef] [PubMed]
  13. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012). [CrossRef] [PubMed]
  14. A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009). [CrossRef] [PubMed]
  15. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  16. J. Ma, L. J. Martínez, M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20(6), 6816–6824 (2012). [CrossRef] [PubMed]
  17. V. R. Almeida, Q. F. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  18. T. Asano, B. S. Song, Y. Akahane, S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006). [CrossRef]
  19. X. Serey, S. Mandal, D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010). [CrossRef] [PubMed]
  20. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  21. M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci 362(1817), 719–737 (2004). [CrossRef] [PubMed]
  22. J. D. Jackson, Classical Electrodynamics (John Wiley, 1975), Chap. 6.
  23. A. H. J. Yang, D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008). [CrossRef] [PubMed]
  24. P. E. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  25. A. E. Cetin, H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited