OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Hemispherical digital optical condensers with no lenses, mirrors, or moving parts

Daniel Dominguez, Luis Molina, Darshan B. Desai, Trevor O’Loughlin, Ayrton. A. Bernussi, and Luis Grave de Peralta  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6948-6957 (2014)
http://dx.doi.org/10.1364/OE.22.006948


View Full Text Article

Enhanced HTML    Acrobat PDF (4654 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple method for obtaining direct non-scanning images in the far-field with subwavelength resolution. Our approach relies on the use of a digital optical condenser comprised of an array of light emitting diodes uniformly distributed inside of a hollow hemisphere. We demonstrate experimental observation of minimum feature sizes of the order of λ/6 with the proposed technique. Although our experiments were performed at visible frequencies, we anticipate that the proposed approach to subwavelength resolution can be extended to the ultraviolet and infrared spectral regions.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(230.3670) Optical devices : Light-emitting diodes
(110.2945) Imaging systems : Illumination design
(220.4298) Optical design and fabrication : Nonimaging optics

ToC Category:
Microscopy

History
Original Manuscript: November 21, 2013
Revised Manuscript: February 26, 2014
Manuscript Accepted: March 10, 2014
Published: March 18, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Daniel Dominguez, Luis Molina, Darshan B. Desai, Trevor O’Loughlin, Ayrton. A. Bernussi, and Luis Grave de Peralta, "Hemispherical digital optical condensers with no lenses, mirrors, or moving parts," Opt. Express 22, 6948-6957 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-6948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  3. H. Köheler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28(12), 1691–1701 (1981). [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  5. E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51(25), 2088–2090 (1987). [CrossRef]
  6. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  7. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008). [CrossRef] [PubMed]
  8. D. O. S. Melville, R. J. Blaikie, C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004). [CrossRef]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  10. S. W. Hell, M. Kroug, “Groung-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995). [CrossRef]
  11. X. Zhuang, “Nano-imaging with STORM,” Nat. Photonics 3(7), 365–367 (2009). [CrossRef] [PubMed]
  12. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular structure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
  13. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007). [CrossRef] [PubMed]
  14. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [CrossRef] [PubMed]
  15. H. Lee, Z. Liu, Y. Xiong, C. Sun, X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  16. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. Journal 1(2), 153–162 (2009). [CrossRef]
  17. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys. 110(8), 083109 (2011). [CrossRef]
  18. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012). [CrossRef] [PubMed]
  19. L. Grave de Peralta, C. J. Regan, A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanning 35(4), 246–252 (2013). [CrossRef] [PubMed]
  20. C. J. Regan, D. Dominguez, A. A. Bernussi, L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. 113(18), 183105 (2013). [CrossRef]
  21. R. Lopez-Boada, C. J. Regan, D. Dominguez, A. A. Bernussi, L. Grave de Peralta, “Fundaments of optical far-field subwavelength resolution based on illumination with surface waves,” Opt. Express 21(10), 11928–11942 (2013). [CrossRef] [PubMed]
  22. A. Vainrub, O. Pustovyy, V. Vodyanoy, “Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser,” Opt. Lett. 31(19), 2855–2857 (2006). [CrossRef] [PubMed]
  23. H. H. Hopkins, P. M. Barham, “The influence of the condenser on microscopic resolution,” Proc. Phys. Soc. 63(10), 737–744 (1950). [CrossRef]
  24. M. Born, and E. Wolf, Priciples of Optics (Pergamon Press, 1975).
  25. LJ Technologies, 1041 E 24 St, Hialeah, Fl 331013, USA.
  26. D. O. S. Melville, R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  27. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  28. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010). [CrossRef]
  29. E. Hetcht, Optics, 3rd ed. (Addison Wesley, 1998).
  30. Y. Kuznetsova, A. Neumann, S. R. J. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express 15(11), 6651–6663 (2007). [CrossRef] [PubMed]
  31. S. Durant, Z. Liu, J. M. Steele, X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006). [CrossRef]
  32. G. Zheng, C. Kolner, C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited