OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Nanosecond colloidal quantum dot lasers for sensing

B. Guilhabert, C. Foucher, A-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H.D. Sun, H.V. Demir, M.D. Dawson, and N. Laurand  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 7308-7319 (2014)
http://dx.doi.org/10.1364/OE.22.007308


View Full Text Article

Enhanced HTML    Acrobat PDF (3584 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors’ knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm2 for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water.

© 2014 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Sensors

History
Original Manuscript: October 31, 2013
Manuscript Accepted: March 7, 2014
Published: March 21, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
B. Guilhabert, C. Foucher, A-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H.D. Sun, H.V. Demir, M.D. Dawson, and N. Laurand, "Nanosecond colloidal quantum dot lasers for sensing," Opt. Express 22, 7308-7319 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-7308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Sun, Y. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nature Photon. 1, 717–722 (2007). [CrossRef]
  2. T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nature Photon. 5, 176–182 (2011). [CrossRef]
  3. S. Nizamoglu, G. Zengin, H. V. Demir, “Color-converting combinations of nanocrystals emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008). [CrossRef]
  4. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22, 602–606 (2009). [CrossRef]
  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287, 1011 (2000). [CrossRef] [PubMed]
  6. V. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission of nanocrystal quantum dots,” Science 290, 314 (2000). [CrossRef] [PubMed]
  7. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303 (2002). [CrossRef]
  8. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, E. H. Sargent, “A solution-processed 1.53μm quantum dot laser with temperature-invariant emission wavelength,” Opt. Express 14, 3273–3281 (2006). [CrossRef] [PubMed]
  9. J. Schafer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008). [CrossRef] [PubMed]
  10. V. M. Menon, M. Luberto, N. V. Valappil, S. Chatterjee, “Lasing from InGaP quantum dots in a spin-coated flexible microcavity,” Opt. Express 16, 19535–19540 (2008). [CrossRef] [PubMed]
  11. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nature Nanotechnology 7, 335–339 (2012). [CrossRef] [PubMed]
  12. Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99, 241103 (2011). [CrossRef]
  13. F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. D. Giustina, G. Brusatin, S. Toffanin, R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Func. Mater. 22, 337–344 (2012). [CrossRef]
  14. V. C. Sundar, H. J. Eisler, T. deng, Y. Chan, L. T. amd, M G. Bawendi, “Soft-lithographically embossed multilayered distributed feedback nanocrystal lasers,” Adv. Mater. 16, 2137–2141 (2004). [CrossRef]
  15. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005). [CrossRef] [PubMed]
  16. Y. Yang, G. A. Turnbull, I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20, 2093–2097 (2010). [CrossRef]
  17. Y. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sensors J. 12, 1174–1180 (2012). [CrossRef]
  18. C. Vannahme, M. C. Leung, F. Richter, C. L. C. Smith, P. G. Hermannsson, A. Kristensen, “Nanoimprinted distributed feedback lasers comprising TiO2 tin films: design and guidelines for high performance sensing,” Laser Photonics Rev. 7, 1–7 (2013). [CrossRef]
  19. E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, H. V. A. Eychmller, “Large-are (over 50cm × 50cm) freestanding films of colloidal InP–ZnS quantum dots,” Nano Lett. 12, 3986–3993 (2012). [CrossRef] [PubMed]
  20. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an enginneered recombinant protein,” JACS 122, 12142–12150 (2000). [CrossRef]
  21. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003). [CrossRef] [PubMed]
  22. Y. Boucher, A. Deryagin, V. Kuchinskii, G. Sokolovskii, “Near-threshold spectral and modal characterisitics of a curved-grating quantum well distributed feedback,” Nanotechnology 14, 615–618 (2003). [CrossRef]
  23. A. M. Haughey, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. A. Burley, M. D. Dawson, N. Laurand, “An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing,” Sensors and Actuators B: Chemical 185, 132–139 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited