OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Effect of vector asymmetry of radially polarized beams in solid immersion microscopy

Abdulkadir Yurt, Michael D. W. Grogan, Siddharth Ramachandran, Bennett B. Goldberg, and M. Selim Ünlü  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 7320-7329 (2014)
http://dx.doi.org/10.1364/OE.22.007320


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically and experimentally investigate the effect of imperfect vector symmetry on radially polarized beams focused by an aplanatic solid immersion lens at a numerical aperture of 3.3. We experimentally achieve circularly symmetric focused spot with a full-width-half-maximum of ~λ0/5.7 at λ0 = 1310nm, free-space wavelength. The tight spatial confinement and overall circular symmetry of the focused radially polarized beam are found to be sensitive to perturbations of its cylindrical polarization symmetry. The addition of a liquid crystal based variable retarder to the optical path can effectively ensure the vector symmetry and achieve circularly symmetric focused spots at such high numerical aperture conditions.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Microscopy

History
Original Manuscript: January 8, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 25, 2014
Published: March 21, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Abdulkadir Yurt, Michael D. W. Grogan, Siddharth Ramachandran, Bennett B. Goldberg, and M. Selim Ünlü, "Effect of vector asymmetry of radially polarized beams in solid immersion microscopy," Opt. Express 22, 7320-7329 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-22-6-7320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]
  2. X. Li, T.-H. Lan, C.-H. Tien, M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012). [CrossRef] [PubMed]
  3. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]
  4. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  5. G. M. Lerman, U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008). [CrossRef] [PubMed]
  6. C. J. R. Sheppard, A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  7. S. F. Pereira, A. S. van de Nes, “Superresolution by means of polarisation, phase and amplitude pupil masks,” Opt. Commun. 234(1-6), 119–124 (2004). [CrossRef]
  8. R. Chen, K. Agarwal, C. J. R. Sheppard, X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38(16), 3111–3114 (2013). [CrossRef] [PubMed]
  9. H. Lin, B. Jia, M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36(13), 2471–2473 (2011). [CrossRef] [PubMed]
  10. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990). [CrossRef]
  11. S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071 (2001). [CrossRef]
  12. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, X. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express 21(12), 14316–14330 (2013). [CrossRef] [PubMed]
  13. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008). [CrossRef] [PubMed]
  14. K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2(5), 311–314 (2008). [CrossRef]
  15. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36(19), 4339–4348 (1997). [CrossRef] [PubMed]
  16. A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoǧlu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007). [CrossRef] [PubMed]
  17. Y. Lu, T. Bifano, S. Unlü, B. B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013). [CrossRef] [PubMed]
  18. S. Ramachandran, P. P. Kristensen, M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  19. Y. Kozawa, S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005). [CrossRef] [PubMed]
  20. M. A. Ahmed, A. Voss, M. M. Vogel, T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  21. M. R. Beversluis, L. Novotny, S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006). [CrossRef] [PubMed]
  22. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007). [CrossRef]
  23. Q. Zhan, J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  24. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  25. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]
  26. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  27. S. H. Goh, C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun. 282(5), 1036–1041 (2009). [CrossRef]
  28. A. Yurt, M. D. W. Grogan, S. Ramachandran, B. B. Goldberg, M. S. Ünlü, “Vortex beams in the vectorial focusing regime,” Opt. Lett. (submitted to).
  29. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett. 30(21), 2864–2866 (2005). [CrossRef] [PubMed]
  30. L. Novotny, R. D. Grober, K. Karrai, “Reflected image of a strongly focused spot,” Opt. Lett. 26(11), 789–791 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited