OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Efficient in-depth trapping with an oil-immersion objective lens

S. NaderS. Reihani, Mohammad A. Charsooghi, Hamid R. Khalesifard, and Ramin Golestanian  »View Author Affiliations

Optics Letters, Vol. 31, Issue 6, pp. 766-768 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Maximum trapping efficiency in optical tweezers occurs close to the coverslip because spherical aberration owing to a mismatch in the refractive indices of the specimen (water) and the immersion oil dramatically decreases the trap efficiency as the trap depth increases. Measuring the axial trap efficiency at various tube lengths by use of an oil-immersion objective has shown that such an aberration can be balanced by another source of spherical aberration, leading to a shift in the position of the maximum efficiency in the Z direction. For a 1.1 μ m polystyrene bead we could achieve the maximal efficiency at a depth of 70 μ m , whereas the trap was stable up to a depth of 100 μ m .

© 2006 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:

Original Manuscript: September 12, 2005
Revised Manuscript: November 29, 2005
Manuscript Accepted: December 8, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

S. Nader S. Reihani, Mohammad A. Charsooghi, Hamid R. Khalesifard, and Ramin Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett. 31, 766-768 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003). [CrossRef] [PubMed]
  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  4. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, Appl. Opt. 33, 616 (1994). [CrossRef] [PubMed]
  5. P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998). [CrossRef]
  6. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006). [CrossRef]
  7. B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000). [CrossRef]
  8. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004). [CrossRef]
  9. The working distance for an objective lens is defined as the distance between the specimen and the front surface of the objective lens. Whereas a typical value of this parameter for a normal objective is ∼100 μm, for long-working-distance objective lenses it could be more than 200 μm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited