OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Nanoscale metal waveguide arrays as plasmon lenses

Xiebin Fan and Guo Ping Wang  »View Author Affiliations


Optics Letters, Vol. 31, Issue 9, pp. 1322-1324 (2006)
http://dx.doi.org/10.1364/OL.31.001322


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation of surface plasmon polaritons (SPPs) through a set of nanoscale metal waveguide arrays (MWGAs) is numerically simulated by using the finite-difference time-domain method. The results reveal that MWGAs show an interesting lens effect on SPPs: SPPs can be strongly focused or defocused by the MWGAs, which we attribute to anomalous coupling of SPPs in MWGAs. Our results imply interesting potential for MWGAs in, for example, nonlinear optics, optical imaging, and nanosensing.

© 2006 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 14, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 28, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Xiebin Fan and Guo Ping Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-31-9-1322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003), and references therein. [CrossRef] [PubMed]
  3. Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004). [CrossRef]
  4. B. Wang and G. P. Wang, Appl. Phys. Lett. 85, 3599 (2004). [CrossRef]
  5. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003). [CrossRef]
  6. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 85, 1863 (2000). [CrossRef] [PubMed]
  7. U. Peschel, T. Pertsch, and F. Lederer, Opt. Lett. 23, 1701 (1998). [CrossRef]
  8. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, Phys. Rev. Lett. 83, 4752 (1999). [CrossRef]
  9. V. Agarwal, J. A. del Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, Phys. Rev. Lett. 92, 097401 (2004). [CrossRef] [PubMed]
  10. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998). [CrossRef]
  11. D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989). [CrossRef] [PubMed]
  12. B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004). [CrossRef] [PubMed]
  13. J. P. Berenger, J. Comput. Phys. 114, 185 (1994). [CrossRef]
  14. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  15. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  16. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  17. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988). [CrossRef] [PubMed]
  18. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, and G. Pennelli, J. Opt. Soc. Am. B 19, 2938 (2002). [CrossRef]
  19. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003), and references therein. [CrossRef] [PubMed]
  20. H. Haus and L. Molter-Orr, IEEE J. Quantum Electron. 19, 840 (1983). [CrossRef]
  21. C. Z. Zao, Semiconductor Guided-Wave Optical Devices Theory and Technology (National Defense Industry Press, 1998).
  22. As its dielectric counterparts, there are also symmetric and asymmetric models exist (represented by ?s and ?a, respectively) in two coupled metal waveguides. However, in coupled metal waveguides ?a>?s. Thus following the definition of the coupling coefficient of two coupled waveguides, C=??/2=(?s??a)/2, the coupling coefficient of the coupled metal waveguides is negative.
  23. J. B. Pendry, Phys. Rev. Lett. 86, 3966 (2000). [CrossRef]
  24. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). [CrossRef] [PubMed]
  25. B. Gralak, S. Enoch, and G. Tayeb, J. Opt. Soc. Am. A 17, 1012 (2000). [CrossRef]
  26. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998). [CrossRef]
  27. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  28. M. Notomi, Phys. Rev. B 62, 10696 (2000). [CrossRef]
  29. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 65, 201104 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited