OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations

S. Nader S. Reihani and Lene B. Oddershede  »View Author Affiliations


Optics Letters, Vol. 32, Issue 14, pp. 1998-2000 (2007)
http://dx.doi.org/10.1364/OL.32.001998


View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The efficiency of an optical trap is limited by its axial strength. Light focused by oil-immersion objectives provides stronger traps but suffers from spherical aberrations, thus restricting the axial stability and working distance. By changing the refractive index of the immersion media we compensate spherical aberrations and measure axial trapping strengths at least twice as large as previously reported. Moreover, the spherical aberrations can be compensated at any desired depth. The improved trapping efficiency implies significantly less heating of the particles, thus diminishing previously published concerns about using gold nanoparticles as handles for optical manipulation.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1790) Medical optics and biotechnology : Confocal microscopy
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 9, 2007
Revised Manuscript: May 8, 2007
Manuscript Accepted: May 9, 2007
Published: July 3, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
S. Nader S. Reihani and Lene B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett. 32, 1998-2000 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-32-14-1998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987). [CrossRef] [PubMed]
  2. P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005). [CrossRef] [PubMed]
  3. Y. Seol, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006). [CrossRef] [PubMed]
  4. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002). [CrossRef] [PubMed]
  5. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003). [CrossRef]
  6. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006). [CrossRef]
  7. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, Opt. Lett. 31, 766 (2006). [CrossRef] [PubMed]
  8. P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998). [CrossRef]
  9. L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).
  10. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004). [CrossRef]
  11. J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, Appl. Opt. 43, 1991 (2004). [CrossRef] [PubMed]
  12. A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited