OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Enhancement of the evanescent field using polymer waveguides fabricated by deep UV exposure on mesoporous silicon

Dominik G. Rabus, Lisa A. DeLouise, and Yasuhisa Ichihashi  »View Author Affiliations

Optics Letters, Vol. 32, Issue 19, pp. 2843-2845 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polymer integrated reverse symmetry waveguides on porous silicon substrate fabricated by using deep ultraviolet radiation in poly(methyl methacrylate) are presented. The layer sequence and geometry of the waveguide enable an evanescent field extending more than 3 μ m into the upper waveguide or analyte layer, enabling various integrated optical devices where large evanescent fields are required. The presented fabrication technique enables the generation of defined regions where the evanescent field is larger than in the rest of the waveguide. This technology can improve the performance of evanescent-wave-based waveguide devices.

© 2007 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: June 27, 2007
Revised Manuscript: August 24, 2007
Manuscript Accepted: August 26, 2007
Published: September 26, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Dominik G. Rabus, Lisa A. DeLouise, and Yasuhisa Ichihashi, "Enhancement of the evanescent field using polymer waveguides fabricated by deep UV exposure on mesoporous silicon," Opt. Lett. 32, 2843-2845 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. C. Nesnidal and T. G. Walker, Appl. Opt. 35, 2226 (1996). [CrossRef] [PubMed]
  2. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, Appl. Opt. 38, 6036 (1999). [CrossRef]
  3. D.-K. Qing and G. Chen, Appl. Phys. Lett. 84, 669 (2004). [CrossRef]
  4. R. Horvath, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B: Lasers Opt. 74, 383 (2002). [CrossRef]
  5. R. Horvath and H. C. Pedersen, Appl. Phys. Lett. 81, 2166 (2002). [CrossRef]
  6. L. A. DeLouise and B. L. Miller, Proc. SPIE 5357, 111 (2004). [CrossRef]
  7. R. L. Oliveri, A. Sciuto, S. Libertino, G. D'Arrigo, and C. Arnone, in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE-LEOS, 2005), pp. 265-270.
  8. P. Henzi, K. Bade, D. G. Rabus, and J. Mohr, J. Vac. Sci. Technol. B 24, 1755 (2006). [CrossRef]
  9. D. G. Rabus, P. Henzi, and J. Mohr, IEEE Photon. Technol. Lett. 3, 591 (2005). [CrossRef]
  10. Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, Appl. Phys. Lett. 77, 2961 (2000). [CrossRef]
  11. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, J. Micromech. Microeng. 15, 1260 (2005). [CrossRef]
  12. D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).
  13. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. A. Isaacson, IEEE J. Sel. Top. Quantum Electron. 13, 214 (2007). [CrossRef]
  14. J. D. L. Shapley and D. A. Barrow, Thin Solid Films 388, 134 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited