OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence

Dong Li, Wei Zheng, and Jianan Y. Qu  »View Author Affiliations

Optics Letters, Vol. 33, Issue 20, pp. 2365-2367 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

© 2008 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 27, 2008
Revised Manuscript: August 19, 2008
Manuscript Accepted: August 26, 2008
Published: October 14, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Dong Li, Wei Zheng, and Jianan Y. Qu, "Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence," Opt. Lett. 33, 2365-2367 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Campbell, Biochemistry, (Saunders College Publishing, 1995). [PubMed]
  2. Q. Zhang, D. W. Piston, and R. H. Goodman, Science 295, 1895 (2002). [PubMed]
  3. C. C. Fjeld, W. T. Birdsong, and R. H. Goodman, Proc. Natl. Acad. Sci. U.S.A. 100, 9202 (2003). [CrossRef] [PubMed]
  4. S. Huang, A. A. Heikal, and W. W. Webb, Biophys. J. 82, 2811 (2002). [CrossRef] [PubMed]
  5. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, Cancer Res. 65, 8766 (2005). [CrossRef] [PubMed]
  6. Y. Wu, W. Zheng, and J. Y. Qu, Opt. Lett. 31, 3122 (2006). [CrossRef] [PubMed]
  7. J. Beuthan, O. Minet, and G. Muller, Ann. N.Y. Acad. Sci. 838, 150 (1998). [CrossRef] [PubMed]
  8. A. C. Croce, A. Ferrigno, M. Vairetti, R. Bertone, I. Freitas, and G. Bottiroli, Photochem. Photobiol. Sci. 3, 920 (2004). [CrossRef] [PubMed]
  9. S. Barban and H. O. Schulze, J. Biol. Chem. 236, 1887 (1961). [PubMed]
  10. W. Ying, Antioxid. Redox. Sign. 10, 1 (2008). [CrossRef]
  11. T. V. Zglinicki, C. Edwall, E. Ostlund, B. Lind, M. Nordberg, N. R. Ringertz, and J. Wroblewski, J. Cell. Sci. 103, 1073 (1992).
  12. M. S. Yang, D. Li, T. Lin, J. J. Zheng, W. Zheng, and J. Y. Qu, Toxicology 247, 6 (2008). [CrossRef] [PubMed]
  13. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eichhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, J. Biomed. Opt. 12, 024014 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited