OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Optofluidic variable aperture

Yu Hongbin, Zhou Guangya, Chau Fook Siong, and Lee Feiwen  »View Author Affiliations

Optics Letters, Vol. 33, Issue 6, pp. 548-550 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variable aperture has been fabricated and demonstrated using polydimethylsiloxane-based optofluidic technology. The device consists of a deformable membrane, an air pressure chamber, a cavity filled with light-absorbing liquid, and a rigid transparent upper plate. The working principle of the device is based on the deformable capability of the thin membrane structure and its resultant contact with the rigid plate. The contact area can be easily controlled by varying the air volume introduced and hence can serve as a light transmission aperture. Experimental results show that aperture diameter can be continuously changed from zero to 6.35 mm .

© 2008 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

Original Manuscript: December 18, 2007
Revised Manuscript: February 3, 2008
Manuscript Accepted: February 5, 2008
Published: March 5, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Yu Hongbin, Zhou Guangya, Chau Fook Siong, and Lee Feiwen, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004). [CrossRef]
  2. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006). [CrossRef] [PubMed]
  3. D. Y. Zhang, N. Justis, and Y. H. Lo, Opt. Lett. 29, 2855 (2004). [CrossRef]
  4. Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006). [CrossRef]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006). [CrossRef] [PubMed]
  6. M. Gersborg-Hansen and A. Kristensen, Appl. Phys. Lett. 89, 103581 (2006). [CrossRef]
  7. D. Y. Zhang, N. Justis, and Y. H. Lo, Appl. Phys. Lett. 84, 4194 (2004). [CrossRef]
  8. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, Opt. Lett. 31, 59 (2006). [CrossRef] [PubMed]
  9. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006). [CrossRef]
  10. D. K. Amani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 142, 925 (2003). [CrossRef]
  11. A. M. Armani and K. J. Vahala, Opt. Lett. 31, 1896 (2006). [CrossRef] [PubMed]
  12. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, Nano Lett. 5, 119 (2005). [CrossRef] [PubMed]
  13. C. Grillet, P. Domachuk, V. Ta'eed, E. Magi, J. A. Bolger, and B. J. Eggleton, Opt. Express 12, 5440 (2004). [CrossRef] [PubMed]
  14. D. C. Dayton, J. D. Mansell, J. D. Gonglewski, and S. R. Restaino, Opt. Commun. 200, 99 (2001). [CrossRef]
  15. P. Pedersen, Comput. Mech. 37, 221 (2006). [CrossRef]
  16. M. E. R. Shanahan, J. Adhes. 63, 15 (1997). [CrossRef]
  17. M. E. R. Shanahan, J. Adhes. 79, 881 (2003). [CrossRef]
  18. N. Chronis, G. L. Lin, K. H. Jeong, and L. P. Lee, Opt. Express 11, 2370 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited