OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Van der Waals versus optical interaction between metal nanoparticles

Lukas Novotny and Carsten Henkel  »View Author Affiliations

Optics Letters, Vol. 33, Issue 9, pp. 1029-1031 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive closed expressions for the Casimir–Polder potential between metal nanoparticles as well as for the light-induced interaction owing to the gradient force. Within the validity of the dipole approximation, the maximum interaction energy turns out to be proportional to the plasma frequency, and it is comparable to the thermal energy at T = 300 K . On the other hand, the light-induced interaction depends linearly on the light intensity, and only for strongly focused laser beams ( 10 100 mW μ m 2 ) does it become comparable in strength to the Casimir–Polder interaction.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Quantum Optics

Original Manuscript: February 12, 2008
Manuscript Accepted: March 25, 2008
Published: April 30, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Lukas Novotny and Carsten Henkel, "Van der Waals versus optical interaction between metal nanoparticles," Opt. Lett. 33, 1029-1031 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  2. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997). [CrossRef]
  3. K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999). [CrossRef]
  4. P. C. Chaumet, A. Rahmani, and N. Nieto-Vesperinas, Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  5. H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  6. E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. Schaich, and B. Dragnea, J. Phys. Chem. B 108, 13607 (2004). [CrossRef]
  7. R. Quidant, A. S. Zelenina, and N. Nieto-Vesperinas, Appl. Phys. A 89, 233 (2007). [CrossRef]
  8. A. S. Zelenina, R. Quidant, and N. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007). [CrossRef] [PubMed]
  9. R. Fuchs and F. Claro, Appl. Phys. Lett. 85, 3280 (2004). [CrossRef]
  10. A. J. Hallock, P. L. Redmond, and L. E. Brus, Proc. Natl. Acad. Sci. USA 102, 1280 (2005). [CrossRef] [PubMed]
  11. T. X. Phuoc, Opt. Commun. 245, 27 (2005). [CrossRef]
  12. P. Chu and D. L. Mills, Phys. Rev. Lett. 99, 127401 (2007). [CrossRef] [PubMed]
  13. D. P. Craig and Y. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, 1984).
  14. H. B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948). [CrossRef]
  15. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Vol. 9 of Course of Theoretical Physics (Pergamon, 1980), Chap. VIII.
  16. C. Henkel, K. Joulain, J.-P. Mulet, and J.-J. Greffet, J. Opt. A 4, S109 (2002). [CrossRef]
  17. J. Mahanty and B. W. Ninham, J. Chem. Phys. 59, 6157 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited