OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Reconstruction of high-resolution holographic microscopic images

M. Kanka, R. Riesenberg, and H. J. Kreuzer  »View Author Affiliations


Optics Letters, Vol. 34, Issue 8, pp. 1162-1164 (2009)
http://dx.doi.org/10.1364/OL.34.001162


View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In in-line holographic microscopy a pinhole illuminates an object and a CCD-detector directly records the hologram in a pixel-pitch-dependent distance. A rapidly calculating exact reconstruction technique using a reorganized hologram with a low number of pixels, the tile superposition technique, is presented. The algorithm is applied on imaging of a 2 μ m bead cluster, and it is compared with other reconstruction techniques. The high-contrast image corresponds to an NA of 0.7. A full 4   megapixel reconstruction with a resolution approaching the diffraction limit is possible in less than a minute. The technique is a base for high-resolution wide-field imaging by multispot illumination.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.3010) Image processing : Image reconstruction techniques
(180.0180) Microscopy : Microscopy

ToC Category:
Holography

History
Original Manuscript: November 21, 2008
Revised Manuscript: January 23, 2009
Manuscript Accepted: March 3, 2009
Published: April 6, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
M. Kanka, R. Riesenberg, and H. J. Kreuzer, "Reconstruction of high-resolution holographic microscopic images," Opt. Lett. 34, 1162-1164 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-34-8-1162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, Nature 161, 777 (1948). [CrossRef] [PubMed]
  2. D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, Appl. Opt. 47, D12 (2008). [CrossRef] [PubMed]
  3. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  4. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2004).
  5. Y. Takaki and H. Ohzu, Appl. Opt. 38, 2204 (1999). [CrossRef]
  6. J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, Appl. Opt. 47, 4723 (2008). [CrossRef] [PubMed]
  7. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992). [CrossRef]
  8. R. Riesenberg, M. Kanka, and J. Bergmann, in Proceedings of the Deutsche Gesellschaft für Angewandte Optik (2006).
  9. R. Riesenberg, M. Kanka, and J. Bergmann, Proc. SPIE 6630, 66300I (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited